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1 Metrische Riaume

1.1 Definition der Metrik

Definition 1.1. 1. Es bezeichne () die leere Menge, AU B die Vereinigung, AN B den Durch-
schnitt, A¢ das Komplement (in einer gegebenen Obermenge), A \ B die Differenzmenge
der Mengen A und B.

2. Es bezeichne N := {1,2,...} die Menge der natiirlichen Zahlen, Ny := {0,1,2,...} die
Menge der natiirlichen Zahlen mit 0, Z := {...,—2,—1,0,1,2,...} den Ring der ganzen
Zahlen, Q := {% 1z €Z,n € N} den Korper der rationalen Zahlen, R den Korper der
reellen Zahlen, C := R + iR den Korper der komplexen Zahlen.

Definition 1.2. Sei M eine nichtleere Menge. Eine Abbildung d: M x M — R heifit Metrik auf
M, wenn folgende Bedingungen erfiillt sind:

(positive Definitheit) Ve,y € M :d(z,y) > 0und (d(z,y) =0 x=y) (Ml)
(Symmetrie) Vae,y € M :d(x,y) = d(y,x) (M2)
(Dreiecksungleichung)  Va,y,z € M : d(x, z) < d(z,y) + d(y, 2) (M3)

Das Paar (M, d) heiit metrischer Raum. Erfilllt d zusitzlich die Verschirfung von (M3)

(ultrametrische Eigenschaft) Vz,y,z € M : d(z,z) < max{d(z,y),d(y, 2)} (M3")

dann heifit d eine Ultrametrik und (M, d) ein ultrametrischer Raum.

Beispiel 1.1. Die Abbildung d(z,y) = |z — y| ist eine Metrik auf Z, Q, R und C (und jeder
nichtleeren Teilmenge davon), sie heifit Betragsmetrik.

1

Beispiel 1.2. Die Abbildung d(x,y) = ;

% ist eine Metrik auf N.




0 fallsx =y

Beispiel 1.3. Die Abbildung d(z,y) = ist eine Metrik auf jeder nichtleeren

1 sonst

Menge, die sogenannte diskrete Metrik oder triviale Metrik. Eine Menge mit dieser Metrik heif3t

diskreter metrischer Raum.

Beispiel 1.4. In der Ebene R? sind die Abbildungen
di((z1,22), (Y1,92)) = |21 — y1| + |22 — 92,
do((x1,22). (1. y2)) = /1 — [ + |2 —
doo (21, 22), (Y1, ¥2)) = max{|z1 — y1|, |z2 — ya|} Metriken.
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Definition 1.3. Sei (M, d) ein metrischer Raum und @) £ 7' C M. Der Wert

d(T) :=sup{d(x,y) : x,y € T} € [0,00) U {o0}

heiBt Durchmesser von T. Man setzt noch d(f)) := 0. Eine Teilmenge T' mit d(T) < oo heifit

beschrankt.

Bemerkung. Die Beschrianktheit von T ist dquivalent dazu, dass es eine offene Kugel gibt, die T’

enthéalt.

1.2 Offene und abgeschlossene Mengen

Sei in diesem Abschnitt stets (M, d) ein metrischer Raum.

Definition 1.4. Sei x € M und 7 > 0. Die Menge
B.(z):={z€ M :d(z,x) <r}
heifit offene Kugel mit Radius v um z. Die Menge
B.(z) :={z€ M :d(z,z) <7}
heifit abgeschlossene Kugel mit Radius r um x.
Definition 1.5. Eine Teilmenge U C M heifit offen, wenn

Ve eU Je >0: B(x) CU.

Eine Teilmenge V' C M heifit abgeschlossen, wenn ihr Komplement V¢ offen ist.

Definition 1.6. Sei T'C M. Die Menge

T:={rxeM:3>0: B(zx) CT}
heifit das Innere (oder der offene Kern) von T. Die Menge
T:={xe€M:VYe>0: B.(x)NT # 0}

heifit der Abschluss (oder die abgeschlossene Hiille) von T. Die Menge

oT =T\ %
heisst der Rand von T.
Lemma 1.1. Es gilt:
1. Jede offene Kugel in M ist eine offene Menge.
2. Jede abgeschlossene Kugel in M ist eine abgeschlossene Menge.

3. Die leere Menge und M sind sowohl offen als auch abgeschlossen.

(1.1)

(1.2)

(1.3)

4. Das Innere einer Teilmenge T von M ist offen und T ist offen genau dann wenn T =T.



5. Der Abschluss einer Teilmenge T von M ist abgeschlossen und T ist abgeschlossen genau
dann wenn T =T.

6. EsistTCTCT fiir jede Teilmenge T von M.
7. Es gilt fir jedes ©x € M und e >0

Be(z) € Be(x) € Be() (L.7)

Beweis 1. Sei y € By(z). Dann ist d(y,z) < r und ¢ := r — d(y,z) > 0. Wir zeigen nun
B:(y) C B,(x). Sei dazu z € B.(y). Dann ist d(z,z) < d(z,y) + d(y,z) < e +d(y,z) =r,
also z € B,(x).

2. Sei y € (By(x))®. Dann ist d(y,z) > r und € := d(y,z) —r > 0. Wir zeigen nun
B.(y) C (B,(x))°. Seidazu z € B.(y). Dann ist d(z,z) > d(y,z)—d(y,z) > d(y,z)—e = r,

also z € (B,(x))°.

3. Aus Definition 1.5 folgt direkt, dass die leere Menge offen ist (denn es gibt kein x € (), fiir
das die Bedingung fehlschlagen kénnte). Daraus folgt dann die Abgeschlossenheit von M.
Aus Definition 1.5 folgt auch, dass M offen ist (denn jede offene Kugel um einen Punkt
aus M liegt ganz in M), und daraus die Abgeschlossenheit der leeren Menge.

4. Sei T C M und z € T, d.h. es gibt ein € > 0 so dass B.(z) C T. Analog zu Punkt 1 findet
man um jeden Punkt y € B(x) eine offene Kugel mit Radius 7, so dass B, (y) C B (z)CT.

Damit liegt auch y in T, also B.(z) C T. Dass T offen ist, genau dann wenn T = T, ist
klar nach Definition.

5. .
6. .
7. .
|
Bemerkung. 1. Durch Einsetzen der Definitionen (1.5) und (1.4) in (1.6) erhélt man
T ={x € M :VYe>0: Bo(x)NT # 0 und B.(z) N (T°) # 0} (1.8)

2. Es ist bei beiden Inklusionen in Gleichung (1.7) in Lemma 1.1 Ungleichheit moglich! Das
heifit, es kann sein, dass der Abschluss der offenen Kugel eine echte Teilmenge der abge-
schlossenen Kugel ist. Es ist aber auch moglich, dass die abgeschlossene Kugel mit der
offenen Kugel iibereinstimmt: B.(z) = B.(x). Man betrachte zum Beispiel offene und
abgeschlossene Kugeln mit Radius 1 bzw. Radius % in einem diskreten metrischen Raum.

Es gibt auch nichttriviale Beispiele, zu denen wir noch kommen werden.
Satz 1.2. 1. Sei(Ai)icr C M eine Familie offener Mengen. Dann ist|J;c; A; ebenfalls offen.

2. Sei (Ag)ier C M eine Familie abgeschlossener Mengen. Dann ist (\;c; A; ebenfalls abge-
schlossen.

3. Seien A, B C M offen. Dann ist AN B offen.
4. Seien A, B C M abgeschlossen. Dann ist AU B abgeschlossen.

Beweis. 1. Sei x € ;¢
mit B.(z) CA; C

A Dann gibt es ein i € I so dass « € A;. Es gibt dann ein € > 0

ZEI
2. (Mier Ai ) = U, (4i)° ist offen nach Punkt 1.

3. Sei x € AN B, dann gibt es o, > 0 mit B,(x) C A, Bg(z) C B. Setze ¢ := min{e, §},
dann ist B.(z) C AN B.

4. (AU B)¢ = A° N B¢ ist offen nach Punkt 3.



Satz 1.3. Ist (M,d) ein metrischer Raum und § # T C M, dann ist mit d := d|p auch (T, d)
ein metrischer Raum. FEine Menge A C T ist offen in T genau dann, wenn es eine in M offene
Menge B C M gibt, so dass BNT = A.

Beweis. Man sieht sofort, dass die Bedingungen (M1), (M2) und (M3) von d auf T erfiillt werden,
damit ist die erste Behauptung klar.

Sei z € T und r > 0. Sei B,(x) die offene Kugel um z mit Radius r in 7" und B, (z) die offene
Kugel um 2 mit Radius 7 in M, dann gilt:

Bo(z)={yeT :dy,z)<r}={yeM:d(y,z) <r}NT =B.(z)NT

Sei A C T offen in T, d.h. zu jedem z € A gibt es ein r(z) > 0 so dass die in T" offene Kugel
By(z)(w) € T ganz in A liegt. Es ist B,(;)(z) = By(y)(2) NT fiir jedes x € A und

A= U .gr(x)(l') = U (Br(x)(x) OT) = <U Br(x)(x)> NT=BNT,

T€A T€EA T€A

wobei B := J,c 4 Br)(z) offen in M ist.

Sei nun A = BNT mit einer in M offenen Menge B C M. Um jedes x € A gibt es eine in M
offene Kugel B, (x) C M die ganz in B liegt. B,(x) := B,.(z) NT ist eine in T offene Kugel um
x, die ganz in A liegt, also ist A offen in T'. O

1.3 Konvergenz

Bezeichne (M, d) weiterhin einen metrischen Raum.

Definition 1.7. Sei (z,,)neny € M eine Folge und « € M. Wenn fiir jedes ¢ > 0 ein N € N

existiert, so dass fiir jedes n > N gilt d(z,,z) < ¢, dann sagt man, die Folge (x,) konvergiert

gegen x. Schreibweise: lim x,, = z. Die Folge (z,,) heiit konvergent, x heiit der Grenzwert der
n—oo

Folge. Eine Folge in einer additiven Gruppe (z.B. der eines Korpers) , die gegen 0 konvergiert,

heifit Nullfolge.

Definition 1.8. Sei (2, )ney € M eine Folge in M. Wenn fiir jedes e > 0 ein N € N existiert,
so dass fiir jedes m > n > N gilt d(x,, ) < &, dann heifit die Folge (z,,) eine Cauchy-Folge.

Lemma 1.4. Jede konvergente Folge ist Cauchy-Folge.
Beweis. ... [

Definition 1.9. Ein metrischer Raum, in dem jede Cauchy-Folge konvergiert, heiflt vollstindiger
metrischer Raum.

Beispiel 1.5. Die Folge (n) C N ist beziiglich der in Beispiel 1.2 definierten Metrik eine Cauchy-
Folge, aber nicht konvergent. Beziiglich der Betragsmetrik ist (n) C N keine Cauchy-Folge.
Beispiel 1.6. Die Folge (%) C R ist beziiglich der Betragsmetrik eine Nullfolge.

Beispiel 1.7. Beziiglich der trivialen Metrik ist eine Folge (z,,) genau dann eine Cauchy-Folge,
wenn sie irgendwann stationdr wird, d.h. wenn es ein N € N gibt, so dass fiir alle n > N gilt:
Ty = Tpy1- Genau dann ist sie auch konvergent.

Beispiel 1.8. R ist bzgl. der Betragsmetrik vollstandig.
Beispiel 1.9. Jeder Vektorraum R™ mit n € N ist vollstdndig beziiglich der euklidischen Metrik

n 2
da(w,y) = /D izt |Ti — il



2 Topogie

2.1 Definitionen

Definition 2.1. Sei M eine nichtleere Menge. Ein Mengensystem 7 C P (M) heifit Topologie
auf M, wenn

1.0eT, MecT
2. VA, BeT: ANBeT
3. Fir jede Familie (4;)ier C 7 gilt UAZ- eT

icl
Das Paar (M, 7) heifit topologischer Raum. Die Mengen T € T heiflen offen, die Teilmengen
T C M mit T° € T heiflen abgeschlossen.

Beispiel 2.1. 1. Fiir jede nichtleere Menge M ist 7 = {(), M} eine Topologie.

2. Fiir jede nichtleere Menge M ist 7 = P(M) eine Topologie. Sie heifit die diskrete Topologie
auf M.

Definition 2.2. Sei (M,7T) ein topologischer Raum. Sei x € M. Eine offene Menge O € T
mit « € O heifit offene Umgebung von x. Eine Menge U C M, die eine offene Umgebung von z
enthilt, heiflt Umgebung von x.

Definition 2.3. Der topogische Raum (M, T) heifit hausdorffsch oder punktetrennend, wenn zu
je zwei verschiedenen Punkten z # y € M Umgebungen U > z, V 2 y existieren mit UNV = (.

Definition 2.4. Sei (M, 7T) ein hausdorffscher topologischer Raum. Sei (z,) C M eine Folge.
Wenn fiir x € M in jeder Umgebung U > x unendlich viele Folgeglieder x,, liegen, dann heif3t =
ein Hiufungswert der Folge (z,,).

Definition 2.5. Sei (M, 7T) ein hausdorffscher topologischer Raum. Sei A C M eine Teilmenge.
Wenn fiir x € M in jeder Umgebung U 3 x mindestens ein von x verschiedenes Element = € X
liegt, dann heifit = ein Hdufungspunkt der Menge T'.

Definition 2.6. Sei (M, 7) ein hausdorffscher topologischer Raum. Sei A C M eine Teilmenge.
Wenn fiir z € M in jeder Umgebung U > x mindestens ein Element x € X liegt, dann heifit
ein Berthrungspunkt der Menge T'.

Bemerkung. Ein Haufungswert  einer Folge (z,) muss nicht Haufungspunkt der Menge {x,}
sein. Z.B. ist das so bei konstanten Folgen. Jedoch ist jeder Haufungspunkt von {z,} ein
Haufungswert von (x,,). Jeder Hiufungspunkt einer Menge ist auch Beriihrungspunkt der Menge.

Definition 2.7. Sei (M,7) ein hausdorffscher topologischer Raum. Sei (x,) C M eine Folge.
Wenn es ein x € M gibt, so dass fiir jede Umgebung U 3 z gilt, dass nur endlich viele Folgeglieder
x,, auBerhalb von U liegen, dann heifit die Folge (z,,) konvergent und « ihr Grenzwert. Man sagt,
(zn,) konvergiert gegen x. Schreibweise: x,, — .

Lemma 2.1. Sei (M,T) ein hausdorffscher topologischer Raum. Wenn die Folge (xz,) C M
konvergiert, dann hat sie genau einen Hdufungswert, namlich ihren Grenzwert.

Beweis. Sei x der Grenzwert von (z,,). Da auflerhalb jeder Umgebung von x nur endlich viele
Folgeglieder liegen, miissen in jeder Umgebung von x unendlich viele Folgeglieder liegen, damit
ist « ein Haufungswert der Folge. Sei z # y € M. Dann gibt es disjunkte Umgebungen U > z
und V' 3 y. In V liegen nur noch endlich viele Folgeglieder, damit ist y kein Haufungswert der
Folge. O

Bemerkung. Die Umkehrung gilt im allgemeinen nicht, denn die Folge (0, 1,0,2,0,3,0,4,...) CR
hat genau einen Hiufungswert, aber konvergiert nicht. (Dass R ein haussdorffscher topologischer
Raum ist, folgt aus der Bemerkung zu Lemma 2.2.)



2.2 Zusammenhang zwischen Metrik und Topologie

Lemma 2.2. Fir jeden metrischen Raum (M,d) ist das System der offenen Mengen beziiglich
d eine Topologie auf M.

Beweis. ) und M sind offen. Nach Satz 1.2 ist die Vereinigung beliebig vieler offener Mengen
offen und der Schnitt von zwei offenen Mengen offen. Damit bilden die offenen Mengen eine
Topologie. O

Definition 2.8. Das System der bzgl. d offenen Mengen heifit die von d erzeugte Topologie.

Bemerkung. Jede von einer Metrik erzeugte Topologie ist hausdorffsch. Denn sind = # y € M,
dann ist 7 := d(z,y)/2 > 0, und die offenen Kugeln B, (z), B, (y) sind disjunkt.

Satz 2.3. Sei M eine nichtleere Menge mit einer Metrik d und einer Topologie T. Die Topologie
T wird von d erzeugt, genau dann wenn jede offene Kugel in T liegt und jede offene Umgebung
eines jeden Punktes x € M eine offene Kugel um x enthdlt.

Beweis. ,,=“: Diese Richtung ist klar.

»,<="“: Zu zeigen ist, dass jede Menge in 7 offen bzgl. d ist, und dass jede offene Menge bzgl.
din 7 liegt.

Sei A offen bzgl. d. Ist A = (), dann ist A € 7. Andernfalls gibt es um jedes x € A eine
offene Kugel B(z), die in A liegt. Damit ist A = (J, .4 B(x). Jedes B(x) liegt nach Vor. in 7,
damit liegt auch A in 7.

Seinun A € 7. Falls A = 0, ist A offen. Andernfalls sei x € A beliebig. Dann ist A eine
offene Umgebung von z, und nach Vor. gibt es ein € > 0, so dass B.(x) C A. Damit ist A
offen. O

Beispiel 2.2. Die diskrete Topologie auf M wird erzeugt von der diskreten Metrik auf M, denn
jede Teilmenge von M liegt in der Topologie, und jede offene Umgebung eines Punktes = enthélt
die offene Kugel B 5(x) = {z}.

Lemma 2.4. Dine Folge (z,,) konvergiert bzgl. der Metrik d gegen x genau dann, wenn sie bzgl.
der Topologie gegen x konvergiert.

Lemma 2.5. Jede Cauchyfolge (x,,) in einem metrischen Raum (M,d) hat héchstens einen
Hiufungswert.

Beweis. Angenommen, a,b € M wiren zwei verschiedene Hiufungswerte von (z,,). Setze r :=
d(x,y)/3. Dann liegen in B,.(z) und in B, (y) jeweils unendlich viele Folgeglieder. Fiir O



3 Kompaktheit

3.1 Definition

Definition 3.1. Sei (M,7) ein topologischer Raum und 7" C M. Eine Familie (4;)ier C
7T offener Mengen (mit beliebiger Indexmenge I) heifit offene Uberdeckung von T, wenn T C

Uiel A;.

Definition 3.2. Sei (M, T) ein topologischer Raum und 7' C M. Wenn es zu jeder offenen
Uberdeckung (4;);er von T eine endliche Teiliiberdeckung (A;)ics, J C I, |J| < oo gibt, dann
heifit T' kompakt.

Beispiel 3.1. In R mit der Betragsmetrik (s. Beispiel 1.1 auf Seite 1) sind genau die beschréinkten
abgeschlossenen Mengen kompakt.

Beispiel 3.2. Jeder endliche topologische Raum ist kompakt.

3.2 Eigenschaften kompakter Mengen

Satz 3.1. Sei (M,T) ein topologischer Raum. Sei K C M kompakt. Dann ist K abgeschlossen
und jede abgeschlossene Teilmenge T von K ist kompakt.

Beweis. ... O

Satz 3.2. Sei (M,d) ein metrischer Raum. Sei K C M kompakt. Dann ist K beschrinkt und
abgeschlossen.

Bewets. ... O
Satz 3.3. Sei (M,d) ein metrischer Raum. Sei K C M kompakt. Dann ist K vollstindig.

Beweis. ... O



4 Eigenschaften von Ultrametriken

Sei in diesem Abschnitt stets (M, d) ein ultrametrischer Raum.

4.1 Eigenschaften von Dreiecken und Kugeln

Lemma 4.1. Seien z,y,z € M. Ist d(z,y) # d(y,z), dann ist d(z, z) = max{d(z,y),d(y,2)}.
Ist d(z,y) < d(y, 2), dann ist d(z,z) = d(y, z).

Beweis. Sei d(x,y) < d(y,z). Dann ist d(x,z) < max{d(z,y),d(y,z)} = d(y,z). Weiter ist
d(y,z) < max{d(z,y),d(z, 2)} < d(y,z). Damit haben wir d(y, z) = max{d(z,y),d(x,z)} und
wegen d(z,y) < d(y, z) ist d(y, z) = d(z, 2). O

Satz 4.2. Jedes Dreieck in M ist gleichseitig oder gleichschenklig mit kiirzerer Basis.

Beweis. Seien z,y,z € M die Ecken und a = d(z,y), b = d(y, 2), ¢ = d(z,z) die Seitenlingen
des Dreiecks. Falls a = b = ¢, ist das Dreieck gleichseitig. Falls zwei Seiten ungleich lang sind,
0.E. a < b, dann ist ¢ = max{a,b} = b nach Lemma 4.1 und das Dreieck hat die gleich langen
Seiten b und ¢ und die Seite a ist kiirzer. O

Satz 4.3. Seix € M, r > 0. Dann gilt:

1. Fir jedes y € By(z) ist By(y) = Br(z), d.h. jeder Punkt in einer offenen Kugel ist
Mittelpunkt dieser Kugel.

2. Fiir jedes y € B,(x) ist B,(y) = B,(z).
3. Die offene Kugel B,.(x) ist auch abgeschlossen.
4. Die abgeschlossene Kugel B, (x) ist auch offen.

Beweis. 1. Sei y € B,(x) fest gewiihlt. Fiir jedes z € B,.(z) gilt d(z,y
d(x,2)} < r, und fiir jedes z € B,(y) gilt d(z,2) < max{d(z,y),d(y,z)
B, (x) = B:(y) gezeigt.

) < max{d(y,z),

} < r. Damit ist

2. Sei y € B,(x) fest gewéhlt. Fiir jedes z € B, (z) gilt d(z,vy)
und fiir jedes z € B, (y) gilt d(z,2) < max{d(z,y),d(y,z)} <
gezeigt.

< max{d(y, v), d(z, )} <
r. Damit ist B,(z ) B, (y)

3. Seiy € (By(x))¢. Fiiralle z € B,(x) gilt d(x,y) > r > d(z, z), und deshalb nach Lemma 4.1
d(y,z) =d(x,y) > r. Damit ist z &€ B,.(y), also B,(y) N B.(z) = 0.

4. Sei y € B,(z). Dann ist B,.(y) C B,(y) = B,(z) eine offene Kugel um y.
O

Bemerkung. Es ist nicht unbedingt B, (z) = B,(x), aber es gibt stets ein s > r, so dass B,.(z) =
B;(z).

4.2 Konvergenz
Lemma 4.4. Sei(x,) C M eine Folge, mit d(x,+1,%,) — 0. Dann ist (z,) eine Cauchy-Folge.

Beweis. Sei € > 0. Es gibt nun ein N € N, so dass d(x11,2,) < € fiir alle n > N. Dann gilt
fir allem >n >N

A, ) < max{d(Tm, Tm-1)s--,d(Tpt1,Tn)} <&



