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1 Metrische Räume

1.1 Definition der Metrik

Definition 1.1. 1. Es bezeichne ∅ die leere Menge, A∪B die Vereinigung, A∩B den Durch-
schnitt, Ac das Komplement (in einer gegebenen Obermenge), A \ B die Differenzmenge
der Mengen A und B.

2. Es bezeichne N := {1, 2, . . .} die Menge der natürlichen Zahlen, N0 := {0, 1, 2, . . .} die
Menge der natürlichen Zahlen mit 0, Z := {. . . ,−2,−1, 0, 1, 2, . . .} den Ring der ganzen
Zahlen, Q :=

{
z
n : z ∈ Z, n ∈ N

}
den Körper der rationalen Zahlen, R den Körper der

reellen Zahlen, C := R+ iR den Körper der komplexen Zahlen.

Definition 1.2. Sei M eine nichtleere Menge. Eine Abbildung d : M ×M → R heißt Metrik auf
M , wenn folgende Bedingungen erfüllt sind:

(positive Definitheit) ∀x, y ∈M : d(x, y) ≥ 0 und (d(x, y) = 0⇔ x = y) (M1)
(Symmetrie) ∀x, y ∈M : d(x, y) = d(y, x) (M2)

(Dreiecksungleichung) ∀x, y, z ∈M : d(x, z) ≤ d(x, y) + d(y, z) (M3)

Das Paar (M,d) heißt metrischer Raum. Erfüllt d zusätzlich die Verschärfung von (M3)

(ultrametrische Eigenschaft) ∀x, y, z ∈M : d(x, z) ≤ max{d(x, y), d(y, z)} (M3′)

dann heißt d eine Ultrametrik und (M,d) ein ultrametrischer Raum.

Beispiel 1.1. Die Abbildung d(x, y) = |x− y| ist eine Metrik auf Z, Q, R und C (und jeder
nichtleeren Teilmenge davon), sie heißt Betragsmetrik.

Beispiel 1.2. Die Abbildung d(x, y) =
∣∣∣ 1
x −

1
y

∣∣∣ ist eine Metrik auf N.
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Beispiel 1.3. Die Abbildung d(x, y) =

{
0 falls x = y

1 sonst
ist eine Metrik auf jeder nichtleeren

Menge, die sogenannte diskrete Metrik oder triviale Metrik. Eine Menge mit dieser Metrik heißt
diskreter metrischer Raum.

Beispiel 1.4. In der Ebene R2 sind die Abbildungen
d1((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|,
d2((x1, x2), (y1, y2)) =

√
|x1 − y1|2 + |x2 − y2|2,

d∞((x1, x2), (y1, y2)) = max{|x1 − y1| , |x2 − y2|} Metriken.

Definition 1.3. Sei (M,d) ein metrischer Raum und ∅ 6= T ⊆M . Der Wert

d(T ) := sup{d(x, y) : x, y ∈ T} ∈ [0,∞) ∪ {∞}

heißt Durchmesser von T . Man setzt noch d(∅) := 0. Eine Teilmenge T mit d(T ) < ∞ heißt
beschränkt.

Bemerkung. Die Beschränktheit von T ist äquivalent dazu, dass es eine offene Kugel gibt, die T
enthält.

1.2 Offene und abgeschlossene Mengen

Sei in diesem Abschnitt stets (M,d) ein metrischer Raum.

Definition 1.4. Sei x ∈M und r > 0. Die Menge

Br(x) := {z ∈M : d(z, x) < r} (1.1)

heißt offene Kugel mit Radius r um x. Die Menge

Br(x) := {z ∈M : d(z, x) ≤ r} (1.2)

heißt abgeschlossene Kugel mit Radius r um x.

Definition 1.5. Eine Teilmenge U ⊆M heißt offen, wenn

∀x ∈ U ∃ε > 0 : Bε(x) ⊆ U. (1.3)

Eine Teilmenge V ⊆M heißt abgeschlossen, wenn ihr Komplement V c offen ist.

Definition 1.6. Sei T ⊆M . Die Menge

◦
T := {x ∈M : ∃ε > 0: Bε(x) ⊆ T} (1.4)

heißt das Innere (oder der offene Kern) von T . Die Menge

T := {x ∈M : ∀ε > 0: Bε(x) ∩ T 6= ∅} (1.5)

heißt der Abschluss (oder die abgeschlossene Hülle) von T . Die Menge

∂T := T \
◦
T (1.6)

heisst der Rand von T .

Lemma 1.1. Es gilt:

1. Jede offene Kugel in M ist eine offene Menge.

2. Jede abgeschlossene Kugel in M ist eine abgeschlossene Menge.

3. Die leere Menge und M sind sowohl offen als auch abgeschlossen.

4. Das Innere einer Teilmenge T von M ist offen und T ist offen genau dann wenn
◦
T = T .
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5. Der Abschluss einer Teilmenge T von M ist abgeschlossen und T ist abgeschlossen genau
dann wenn T = T .

6. Es ist
◦
T ⊆ T ⊆ T für jede Teilmenge T von M .

7. Es gilt für jedes x ∈M und ε > 0

Bε(x) ⊆ Bε(x) ⊆ Bε(x) (1.7)

Beweis. 1. Sei y ∈ Br(x). Dann ist d(y, x) < r und ε := r − d(y, x) > 0. Wir zeigen nun
Bε(y) ⊆ Br(x). Sei dazu z ∈ Bε(y). Dann ist d(z, x) ≤ d(z, y) + d(y, x) ≤ ε+ d(y, x) = r,
also z ∈ Br(x).

2. Sei y ∈ (Br(x))c. Dann ist d(y, x) > r und ε := d(y, x) − r > 0. Wir zeigen nun
Bε(y) ⊆ (Br(x))c. Sei dazu z ∈ Bε(y). Dann ist d(z, x) ≥ d(y, x)−d(y, z) ≥ d(y, x)−ε = r,
also z ∈ (Br(x))c.

3. Aus Definition 1.5 folgt direkt, dass die leere Menge offen ist (denn es gibt kein x ∈ ∅, für
das die Bedingung fehlschlagen könnte). Daraus folgt dann die Abgeschlossenheit von M .
Aus Definition 1.5 folgt auch, dass M offen ist (denn jede offene Kugel um einen Punkt
aus M liegt ganz in M), und daraus die Abgeschlossenheit der leeren Menge.

4. Sei T ⊆M und x ∈
◦
T , d.h. es gibt ein ε > 0 so dass Bε(x) ⊆ T . Analog zu Punkt 1 findet

man um jeden Punkt y ∈ Bε(x) eine offene Kugel mit Radius η, so dass Bη(y) ⊆ Bε(x) ⊆ T .

Damit liegt auch y in
◦
T , also Bε(x) ⊆

◦
T . Dass T offen ist, genau dann wenn

◦
T = T , ist

klar nach Definition.

5. . . .

6. . . .

7. . . .

Bemerkung. 1. Durch Einsetzen der Definitionen (1.5) und (1.4) in (1.6) erhält man

∂T = {x ∈M : ∀ε > 0: Bε(x) ∩ T 6= ∅ und Bε(x) ∩ (T c) 6= ∅} (1.8)

2. Es ist bei beiden Inklusionen in Gleichung (1.7) in Lemma 1.1 Ungleichheit möglich! Das
heißt, es kann sein, dass der Abschluss der offenen Kugel eine echte Teilmenge der abge-
schlossenen Kugel ist. Es ist aber auch möglich, dass die abgeschlossene Kugel mit der
offenen Kugel übereinstimmt: Bε(x) = Bε(x). Man betrachte zum Beispiel offene und
abgeschlossene Kugeln mit Radius 1 bzw. Radius 1

2 in einem diskreten metrischen Raum.
Es gibt auch nichttriviale Beispiele, zu denen wir noch kommen werden.

Satz 1.2. 1. Sei (Ai)i∈I ⊂M eine Familie offener Mengen. Dann ist
⋃
i∈I Ai ebenfalls offen.

2. Sei (Ai)i∈I ⊂ M eine Familie abgeschlossener Mengen. Dann ist
⋂
i∈I Ai ebenfalls abge-

schlossen.

3. Seien A,B ⊆M offen. Dann ist A ∩B offen.

4. Seien A,B ⊆M abgeschlossen. Dann ist A ∪B abgeschlossen.

Beweis. 1. Sei x ∈
⋃
i∈I Ai. Dann gibt es ein i ∈ I so dass x ∈ Ai. Es gibt dann ein ε > 0

mit Bε(x) ⊆ Ai ⊆
⋃
i∈I Ai.

2.
(⋂

i∈I Ai
)c =

⋃
i∈I(Ai)

c ist offen nach Punkt 1.

3. Sei x ∈ A ∩ B, dann gibt es α, β > 0 mit Bα(x) ⊆ A, Bβ(x) ⊆ B. Setze ε := min{α, β},
dann ist Bε(x) ⊆ A ∩B.

4. (A ∪B)c = Ac ∩Bc ist offen nach Punkt 3.
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Satz 1.3. Ist (M,d) ein metrischer Raum und ∅ 6= T ⊆ M , dann ist mit d̃ := d|T auch (T, d̃)
ein metrischer Raum. Eine Menge A ⊆ T ist offen in T genau dann, wenn es eine in M offene
Menge B ⊆M gibt, so dass B ∩ T = A.

Beweis. Man sieht sofort, dass die Bedingungen (M1), (M2) und (M3) von d̃ auf T erfüllt werden,
damit ist die erste Behauptung klar.

Sei x ∈ T und r > 0. Sei B̃r(x) die offene Kugel um x mit Radius r in T und Br(x) die offene
Kugel um x mit Radius r in M , dann gilt:

B̃r(x) = {y ∈ T : d(y, x) < r} = {y ∈M : d(y, x) < r} ∩ T = Br(x) ∩ T

Sei A ⊆ T offen in T , d.h. zu jedem x ∈ A gibt es ein r(x) > 0 so dass die in T offene Kugel
B̃r(x)(x) ⊆ T ganz in A liegt. Es ist B̃r(x)(x) = Br(x)(x) ∩ T für jedes x ∈ A und

A =
⋃
x∈A

B̃r(x)(x) =
⋃
x∈A

(
Br(x)(x) ∩ T

)
=

(⋃
x∈A

Br(x)(x)

)
∩ T = B ∩ T,

wobei B :=
⋃
x∈ABr(x)(x) offen in M ist.

Sei nun A = B ∩T mit einer in M offenen Menge B ⊆M . Um jedes x ∈ A gibt es eine in M
offene Kugel Br(x) ⊆ M die ganz in B liegt. B̃r(x) := Br(x) ∩ T ist eine in T offene Kugel um
x, die ganz in A liegt, also ist A offen in T .

1.3 Konvergenz

Bezeichne (M,d) weiterhin einen metrischen Raum.

Definition 1.7. Sei (xn)n∈N ⊂ M eine Folge und x ∈ M . Wenn für jedes ε > 0 ein N ∈ N
existiert, so dass für jedes n ≥ N gilt d(xn, x) < ε, dann sagt man, die Folge (xn) konvergiert
gegen x. Schreibweise: lim

n→∞
xn = x. Die Folge (xn) heißt konvergent, x heißt der Grenzwert der

Folge. Eine Folge in einer additiven Gruppe (z.B. der eines Körpers) , die gegen 0 konvergiert,
heißt Nullfolge.

Definition 1.8. Sei (xn)n∈N ⊂ M eine Folge in M . Wenn für jedes ε > 0 ein N ∈ N existiert,
so dass für jedes m > n ≥ N gilt d(xn, xm) < ε, dann heißt die Folge (xn) eine Cauchy-Folge.

Lemma 1.4. Jede konvergente Folge ist Cauchy-Folge.

Beweis. . . .

Definition 1.9. Ein metrischer Raum, in dem jede Cauchy-Folge konvergiert, heißt vollständiger
metrischer Raum.

Beispiel 1.5. Die Folge (n) ⊂ N ist bezüglich der in Beispiel 1.2 definierten Metrik eine Cauchy-
Folge, aber nicht konvergent. Bezüglich der Betragsmetrik ist (n) ⊂ N keine Cauchy-Folge.

Beispiel 1.6. Die Folge ( 1
n ) ⊂ R ist bezüglich der Betragsmetrik eine Nullfolge.

Beispiel 1.7. Bezüglich der trivialen Metrik ist eine Folge (xn) genau dann eine Cauchy-Folge,
wenn sie irgendwann stationär wird, d.h. wenn es ein N ∈ N gibt, so dass für alle n ≥ N gilt:
xn = xn+1. Genau dann ist sie auch konvergent.

Beispiel 1.8. R ist bzgl. der Betragsmetrik vollständig.

Beispiel 1.9. Jeder Vektorraum R
n mit n ∈ N ist vollständig bezüglich der euklidischen Metrik

d2(x, y) =
√∑n

i=1 |xi − yi|
2
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2 Topogie

2.1 Definitionen

Definition 2.1. Sei M eine nichtleere Menge. Ein Mengensystem T ⊆ P(M) heißt Topologie
auf M , wenn

1. ∅ ∈ T , M ∈ T

2. ∀A,B ∈ T : A ∩B ∈ T

3. Für jede Familie (Ai)i∈I ⊂ T gilt
⋃
i∈I

Ai ∈ T

Das Paar (M, T ) heißt topologischer Raum. Die Mengen T ∈ T heißen offen, die Teilmengen
T ⊆M mit T c ∈ T heißen abgeschlossen.

Beispiel 2.1. 1. Für jede nichtleere Menge M ist T = {∅,M} eine Topologie.

2. Für jede nichtleere Menge M ist T = P(M) eine Topologie. Sie heißt die diskrete Topologie
auf M .

Definition 2.2. Sei (M, T ) ein topologischer Raum. Sei x ∈ M . Eine offene Menge O ∈ T
mit x ∈ O heißt offene Umgebung von x. Eine Menge U ⊆ M , die eine offene Umgebung von x
enthält, heißt Umgebung von x.

Definition 2.3. Der topogische Raum (M, T ) heißt hausdorffsch oder punktetrennend, wenn zu
je zwei verschiedenen Punkten x 6= y ∈M Umgebungen U 3 x, V 3 y existieren mit U ∩ V = ∅.

Definition 2.4. Sei (M, T ) ein hausdorffscher topologischer Raum. Sei (xn) ⊂ M eine Folge.
Wenn für x ∈M in jeder Umgebung U 3 x unendlich viele Folgeglieder xn liegen, dann heißt x
ein Häufungswert der Folge (xn).

Definition 2.5. Sei (M, T ) ein hausdorffscher topologischer Raum. Sei A ⊂M eine Teilmenge.
Wenn für x ∈ M in jeder Umgebung U 3 x mindestens ein von x verschiedenes Element x ∈ X
liegt, dann heißt x ein Häufungspunkt der Menge T .

Definition 2.6. Sei (M, T ) ein hausdorffscher topologischer Raum. Sei A ⊂M eine Teilmenge.
Wenn für x ∈ M in jeder Umgebung U 3 x mindestens ein Element x ∈ X liegt, dann heißt x
ein Berührungspunkt der Menge T .

Bemerkung. Ein Häufungswert x einer Folge (xn) muss nicht Häufungspunkt der Menge {xn}
sein. Z.B. ist das so bei konstanten Folgen. Jedoch ist jeder Häufungspunkt von {xn} ein
Häufungswert von (xn). Jeder Häufungspunkt einer Menge ist auch Berührungspunkt der Menge.

Definition 2.7. Sei (M, T ) ein hausdorffscher topologischer Raum. Sei (xn) ⊂ M eine Folge.
Wenn es ein x ∈M gibt, so dass für jede Umgebung U 3 x gilt, dass nur endlich viele Folgeglieder
xn außerhalb von U liegen, dann heißt die Folge (xn) konvergent und x ihr Grenzwert. Man sagt,
(xn) konvergiert gegen x. Schreibweise: xn −→ x.

Lemma 2.1. Sei (M, T ) ein hausdorffscher topologischer Raum. Wenn die Folge (xn) ⊂ M
konvergiert, dann hat sie genau einen Häufungswert, nämlich ihren Grenzwert.

Beweis. Sei x der Grenzwert von (xn). Da außerhalb jeder Umgebung von x nur endlich viele
Folgeglieder liegen, müssen in jeder Umgebung von x unendlich viele Folgeglieder liegen, damit
ist x ein Häufungswert der Folge. Sei x 6= y ∈ M . Dann gibt es disjunkte Umgebungen U 3 x
und V 3 y. In V liegen nur noch endlich viele Folgeglieder, damit ist y kein Häufungswert der
Folge.

Bemerkung. Die Umkehrung gilt im allgemeinen nicht, denn die Folge (0, 1, 0, 2, 0, 3, 0, 4, . . .) ⊂ R
hat genau einen Häufungswert, aber konvergiert nicht. (Dass R ein haussdorffscher topologischer
Raum ist, folgt aus der Bemerkung zu Lemma 2.2.)
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2.2 Zusammenhang zwischen Metrik und Topologie

Lemma 2.2. Für jeden metrischen Raum (M,d) ist das System der offenen Mengen bezüglich
d eine Topologie auf M .

Beweis. ∅ und M sind offen. Nach Satz 1.2 ist die Vereinigung beliebig vieler offener Mengen
offen und der Schnitt von zwei offenen Mengen offen. Damit bilden die offenen Mengen eine
Topologie.

Definition 2.8. Das System der bzgl. d offenen Mengen heißt die von d erzeugte Topologie.

Bemerkung. Jede von einer Metrik erzeugte Topologie ist hausdorffsch. Denn sind x 6= y ∈ M ,
dann ist r := d(x, y)/2 > 0, und die offenen Kugeln Br(x), Br(y) sind disjunkt.

Satz 2.3. Sei M eine nichtleere Menge mit einer Metrik d und einer Topologie T . Die Topologie
T wird von d erzeugt, genau dann wenn jede offene Kugel in T liegt und jede offene Umgebung
eines jeden Punktes x ∈M eine offene Kugel um x enthält.

Beweis. ”⇒“: Diese Richtung ist klar.

”⇐“: Zu zeigen ist, dass jede Menge in T offen bzgl. d ist, und dass jede offene Menge bzgl.
d in T liegt.

Sei A offen bzgl. d. Ist A = ∅, dann ist A ∈ T . Andernfalls gibt es um jedes x ∈ A eine
offene Kugel B(x), die in A liegt. Damit ist A =

⋃
x∈AB(x). Jedes B(x) liegt nach Vor. in T ,

damit liegt auch A in T .
Sei nun A ∈ T . Falls A = ∅, ist A offen. Andernfalls sei x ∈ A beliebig. Dann ist A eine

offene Umgebung von x, und nach Vor. gibt es ein ε > 0, so dass Bε(x) ⊆ A. Damit ist A
offen.

Beispiel 2.2. Die diskrete Topologie auf M wird erzeugt von der diskreten Metrik auf M , denn
jede Teilmenge von M liegt in der Topologie, und jede offene Umgebung eines Punktes x enthält
die offene Kugel B1/2(x) = {x}.

Lemma 2.4. Dine Folge (xn) konvergiert bzgl. der Metrik d gegen x genau dann, wenn sie bzgl.
der Topologie gegen x konvergiert.

Lemma 2.5. Jede Cauchyfolge (xn) in einem metrischen Raum (M,d) hat höchstens einen
Häufungswert.

Beweis. Angenommen, a, b ∈ M wären zwei verschiedene Häufungswerte von (xn). Setze r :=
d(x, y)/3. Dann liegen in Br(x) und in Br(y) jeweils unendlich viele Folgeglieder. Für
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3 Kompaktheit

3.1 Definition

Definition 3.1. Sei (M, T ) ein topologischer Raum und T ⊆ M . Eine Familie (Ai)i∈I ⊂
T offener Mengen (mit beliebiger Indexmenge I) heißt offene Überdeckung von T , wenn T ⊆⋃
i∈I Ai.

Definition 3.2. Sei (M, T ) ein topologischer Raum und T ⊆ M . Wenn es zu jeder offenen
Überdeckung (Ai)i∈I von T eine endliche Teilüberdeckung (Ai)i∈J , J ⊆ I, |J | < ∞ gibt, dann
heißt T kompakt.

Beispiel 3.1. In R mit der Betragsmetrik (s. Beispiel 1.1 auf Seite 1) sind genau die beschränkten
abgeschlossenen Mengen kompakt.

Beispiel 3.2. Jeder endliche topologische Raum ist kompakt.

3.2 Eigenschaften kompakter Mengen

Satz 3.1. Sei (M, T ) ein topologischer Raum. Sei K ⊆M kompakt. Dann ist K abgeschlossen
und jede abgeschlossene Teilmenge T von K ist kompakt.

Beweis. . . .

Satz 3.2. Sei (M,d) ein metrischer Raum. Sei K ⊆ M kompakt. Dann ist K beschränkt und
abgeschlossen.

Beweis. . . .

Satz 3.3. Sei (M,d) ein metrischer Raum. Sei K ⊆M kompakt. Dann ist K vollständig.

Beweis. . . .
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4 Eigenschaften von Ultrametriken

Sei in diesem Abschnitt stets (M,d) ein ultrametrischer Raum.

4.1 Eigenschaften von Dreiecken und Kugeln

Lemma 4.1. Seien x, y, z ∈ M . Ist d(x, y) 6= d(y, z), dann ist d(x, z) = max{d(x, y), d(y, z)}.
Ist d(x, y) < d(y, z), dann ist d(x, z) = d(y, z).

Beweis. Sei d(x, y) < d(y, z). Dann ist d(x, z) ≤ max{d(x, y), d(y, z)} = d(y, z). Weiter ist
d(y, z) ≤ max{d(x, y), d(x, z)} ≤ d(y, z). Damit haben wir d(y, z) = max{d(x, y), d(x, z)} und
wegen d(x, y) < d(y, z) ist d(y, z) = d(x, z).

Satz 4.2. Jedes Dreieck in M ist gleichseitig oder gleichschenklig mit kürzerer Basis.

Beweis. Seien x, y, z ∈ M die Ecken und a = d(x, y), b = d(y, z), c = d(z, x) die Seitenlängen
des Dreiecks. Falls a = b = c, ist das Dreieck gleichseitig. Falls zwei Seiten ungleich lang sind,
o.E. a < b, dann ist c = max{a, b} = b nach Lemma 4.1 und das Dreieck hat die gleich langen
Seiten b und c und die Seite a ist kürzer.

Satz 4.3. Sei x ∈M , r > 0. Dann gilt:

1. Für jedes y ∈ Br(x) ist Br(y) = Br(x), d.h. jeder Punkt in einer offenen Kugel ist
Mittelpunkt dieser Kugel.

2. Für jedes y ∈ Br(x) ist Br(y) = Br(x).

3. Die offene Kugel Br(x) ist auch abgeschlossen.

4. Die abgeschlossene Kugel Br(x) ist auch offen.

Beweis. 1. Sei y ∈ Br(x) fest gewählt. Für jedes z ∈ Br(x) gilt d(z, y) ≤ max{d(y, x),
d(x, z)} < r, und für jedes z ∈ Br(y) gilt d(z, x) ≤ max{d(z, y), d(y, z)} < r. Damit ist
Br(x) = Br(y) gezeigt.

2. Sei y ∈ Br(x) fest gewählt. Für jedes z ∈ Br(x) gilt d(z, y) ≤ max{d(y, x), d(x, z)} ≤ r,
und für jedes z ∈ Br(y) gilt d(z, x) ≤ max{d(z, y), d(y, z)} ≤ r. Damit ist Br(x) = Br(y)
gezeigt.

3. Sei y ∈ (Br(x))c. Für alle z ∈ Br(x) gilt d(x, y) ≥ r > d(x, z), und deshalb nach Lemma 4.1
d(y, z) = d(x, y) ≥ r. Damit ist z 6∈ Br(y), also Br(y) ∩Br(x) = ∅.

4. Sei y ∈ Br(x). Dann ist Br(y) ⊆ Br(y) = Br(x) eine offene Kugel um y.

Bemerkung. Es ist nicht unbedingt Br(x) = Br(x), aber es gibt stets ein s ≥ r, so dass Br(x) =
Bs(x).

4.2 Konvergenz

Lemma 4.4. Sei (xn) ⊂M eine Folge, mit d(xn+1, xn) −→ 0. Dann ist (xn) eine Cauchy-Folge.

Beweis. Sei ε > 0. Es gibt nun ein N ∈ N, so dass d(xn+1, xn) < ε für alle n ≥ N . Dann gilt
für alle m > n ≥ N

d(xm, xn) ≤ max{d(xm, xm−1), . . . , d(xn+1, xn)} < ε
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