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§2. Quadratische Formen über Qp

. . .

2.3. Klassifikation

Theorem 7. Zwei quadratische Formen über Qp sind äquivalent gdw. sie den gleichen Rang,
die gleiche Diskriminante und die gleiche Invariante ε haben.

Beweis. Dass zwei äquivalente quadr. Formen die gleichen Invarianten haben, ist klar nach
ihren Definitionen. Die Umkehrung beweisen wir mit Induktion nach dem (nach Vor.) ge-
meinsamen Rang n der quadr. Formen f und g.
Der Fall n = 0 ist trivial (f = 0 = g ist die einzige quadr. Form).
Ist n ≥ 1, dann folgt aus Th. 6, Kor., dass f und g dieselben Elemente von k∗/k∗2 repräsen-
tieren, es gibt also ein a ∈ k∗ das von f und von g repräsentiert wird. Deshalb haben wir
(nach 1.6, 3’, Kor. 1)

f ∼ aZ2 u f ′ und g ∼ aZ2 u g′

mit quadr. Formen f ′, g′ vom Rang n − 1. Es ist d(f ′) = d(f)/a = d(g)/a = d(g′) und
ε(f ′) = ε(f)/(a, d(f ′)) = ε(g)/(a, d(g′)) = ε(g′). Also haben f ′, g′ die gleichen Invarianten
und nach Induktionsvoraussetzung ist f ′ ∼ g′, also auch f ∼ g. ♣

Korollar. Bis auf Äquivalenz existiert genau eine quadr. Form vom Rang 4 die nicht die 0
repräsentiert. Seien a, b ∈ Qp mit (a, b) = −1, dann ist das die Form z2 − ax2 − by2 + abt2.

Beweis. Nach Theorem 6 wird eine solche Form durch die Invarianten d = 1, ε = −(−1,−1)
charakterisiert. Nachrechnen zeigt, dass f = z2 − ax2 − by2 + abt2 diese Invarianten hat
(ε(f) = (−a,−b)(ab, ab) = (−1,−1)(a, b) = −(−1,−1)). ♣

Bemerkung. Diese quadr. Form ist die reduzierte Norm des (bis auf Isomorphie eindeutig
bestimmten) Schiefkörpers vom Grad 4 über Qp, dem ”Quaternionenkörper über Qp” mit
der Basis B = {1, i, j, k}, wobei i2 = a, j2 = b, ij = k = −ji, (a, b) = −1.
(Ist α = z + xi + yj + tk ein Quaternion über Qp, dann ist N(α) := det(MB(`α)) =
(z2 − ax2 − by2 + abt2)2.)
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Satz 6. Sei n > 1, d ∈ Q∗
p/Q∗

p
2, ε = ±1. Es existiert eine quadr. Form f vom Rang n mit

d(f) = d, ε(f) = ε genau dann, wenn n = 1, ε = 1 oder n = 2, d 6= −1 oder n = 2, ε = 1
oder n ≥ 3.

Beweis. Der Fall n = 1 ist trivial (ε(f) = 1 und d(f) = d für f ∼ dX2).
Ist n = 2, dann ist f ∼ aX2 + bY 2, und es gilt d(f) = −1 ⇒ ε(f) = (a, b) = (a,−ab) = 1,
also kann nicht gleichzeitig d(f) = −1 und ε(f) = −1 sein (das zeigt ”⇒”). Falls umgekehrt
d = −1, ε = 1, hat f = X2−Y 2 diese Invarianten, ist aber d 6= −1, dann existiert ein a ∈ Q∗

p

mit (a,−d) = ε und f = aX2 + adY 2 leistet das Gewünschte.
Ist n = 3, dann sei −d 6= a ∈ Q∗

p/Q∗
p
2. Wie eben gezeigt wurde, existiert eine quadr. Form g

vom Rang 2 mit d(g) = ad, ε(g) = ε(a,−d). Dann hat f = aZ2 u g die Invarianten d und ε.
Ist schliesslich n ≥ 4, dann gibt es ein g vom Rang 3 mit den vorgegebenen Invarianten und
f = g(X1, X2, X3) + X2

4 + · · ·+ X2
n hat dieselben Invarianten. ♣

Korollar. Die Anzahl der Äquivalenzklassen quadr. Formen vom Rang n über Qp ist
für n falls p 6= 2 falls p = 2
= 1 4 8
= 2 7 15
≥ 3 8 16

Beweis. d(f) kann 4 Werte annehmen für p 6= 2 und 8 Werte für p = 2, ε(f) kann 2 Werte
annehmen. Mit den Einschränkungen aus Satz 6 ergeben sich die Anzahlen. ♣

2.4. Der reelle Fall

Sei f eine quadr. Form vom Rang n über R. f ist äquivalent zu

X2
1 + · · ·+ X2

r − Y 2
1 − · · · − Y 2

s

mit r, s ∈ N0 und r + s = n. Das Paar (r, s) hängt nur von f ab, es heißt die Signatur von
f . f heißt definit, falls r = 0 oder s = 0, sonst indefinit (genau in diesem Fall repräsentiert
f die 0).
Die Invarianten ε(f) und d(f) sind definiert wie im Fall Qp, und wegen (−1,−1) = −1
ergeben sich die Formeln

ε(f) = (−1)s(s−1)/2 =

{
1 falls s ≡ 0, 1 (mod 4)

−1 falls s ≡ 2, 3 (mod 4)

d(f) = (−1)s =

{
1 falls s ≡ 0 (mod 2)

−1 falls s ≡ 1 (mod 2)

Die Werte von d(f) und ε(f) bestimmen also den Wert von s mod 4, insbesondere ist f im
Fall n ≤ 3 bis auf Äquivalenz eindeutig durch d(f) und ε(f) bestimmt.
Man sieht leicht, dass die Teile i), ii), iii) von Theorem 6 und seinem Korollar auch für R
gelten (denn in den Beweisen wurde nur die Regularität des Hilbert-Symbols benutzt), und
dass Teil iv) nicht für R zutrifft.
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§3. Quadratische Formen über Q
Alle quadratischen Formen f die wir in diesem Abschnitt betrachten, sollen Koeffizienten in
Q haben und nichtdegeneriert sein.

3.1. Invarianten einer quadr. Form

Wie in Kapitel III, Abschnitt 2 bezeichnen wir mit V die Menge der Primzahlen zusammen
mit dem Symbol ∞ und setzen Q∞ = R.
Sei f ∼ a1X

2
1 + · · ·+ anX

2
n nichtdegeneriert. Wir ordnen dieser quadr. Form folgende Inva-

rianten zu:

a) Die Diskriminante d(f) = a1 · · · an ∈ Q∗/Q∗2

b) Sei v ∈ V . Dann sei fv die quadr. Form über Qv mit denselben Koeffizienten wie f
(wobei man die Injektion Q → Qv benutzt). Die Invarianten von fv bezeichnen wir mit
dv(f) und εv(f). Es ist klar, dass dv(f) das Bild von d(f) ist unter der kanonischen
Abbildung Q/Q∗2 → Qv/Q∗

v
2. Es ist εv(f) =

∏
i<j(ai, aj)v und die Produktformel aus

(III, 2.1, Theorem 3) liefert
∏

v∈V εv(f) = 1.

c) Die Signatur (r, s) der reellen quadr. Form f .

Die Invarianten dv(f), εv(f), (r, s) heißen lokale Invarianten von f .

3.2. Repräsentation einer Zahl durch eine quadr. Form

Theorem 8 (Hasse-Minkowski). f repr 0 ⇔ ∀ v ∈ V : fv repr 0. (D.h. f hat eine ”glo-
bale” Nullstelle gdw. f ”überall lokal” eine Nullstelle hat.)

Beweis. ”⇒”: Klar.
”⇐”: Schreibe f = a1X

2
1 + · · · + anX

2
n, ai ∈ Q∗. Indem man a1f statt f betrachtet, kann

man zusätzlich a1 = 1 annehmen. Wir unterscheiden mehrere Fälle.

i) n = 2.
Es ist f = X2

1 − aX2
2 und weil f∞ repr 0 ist a > 0. Zerlege a in der Form a =

∏
p pvp(a). Da

fp die 0 repräsentiert, ist a ∈ Q∗
p
2, also ist vp(a) gerade. Weil das für alle p gilt, ist a ein

Quadrat in Q und f repr 0.

ii) n = 3 (Legendre).
Es ist f = X2

1 − aX2
2 − bX2

3 . Indem wir a und b mit Quadraten multiplizieren, können
wir annehmen, dass a und b quadratfreie ganze Zahlen sind, und oBdA sei |a| ≤ |b|. Wir
verwenden Induktion nach m = |a|+ |b| ∈ N.
Ist m = 2, dann ist f = X2

1 ±X2
2 ±X2

3 . Der Fall f = X2
1 + X2

2 + X2
3 entfällt, weil f∞ repr 0,

in allen anderen Fällen repräsentiert f die 0.
Ist m > 2, dann ist |b| ≥ 2 und wir schreiben b = ±p1 · · · pk mit pw. versch. Primzahlen pi.
Sei p eine dieser pi, wir werden zeigen, dass a ein Quadrat modulo p ist.
Das ist klar, wenn a ≡ 0 (mod p). Andernfalls ist a eine p-adische Einheit. Nach Voraus-
setzung existiert ein Tupel (x, y, z) ∈ (Qp)

3 \ {0} mit z2 − ax2 − by2 = 0 und wir können
annehmen, dass es primitiv ist (II, 2.1, Satz 6). Wir haben dann z2− ax2 ≡ 0 (mod p) (weil
p | b).
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Falls nun x ≡ 0 (mod p), dann wäre auch z ≡ 0 (mod p), und dann wäre by2 ≡ 0 (mod p2).
Weil aber vp(b) = 1, heißt dass y ≡ 0 (mod p), im Widerspruch zur Primitivität der Lösung.
Es ist also x 6≡ 0 (mod p), und deshalb ist a ein Quadrat modulo p.
Nach dem Chin. Restsatz ist dann a auch ein Quadrat modulo b.
Es existieren also ganze Zahlen t, b′ mit |t| ≤ |b| /2 und t2 = a+bb′. Die Gleichung bb′ = t2−a
zeigt, dass bb′ eine Norm der Erweiterung k(

√
a)/k ist für k = Q und alle Qv (egal ob

√
a ∈ Qv

[dann bb′ = N(t2 − a)] oder nicht [dann bb′ = N(t +
√

a)]). Analog zum Beweis von III, 1.1,
Satz 2 iii) folgt b ∈ Nk(

√
a)∗ ⇔ b2b′ ∈ Nk(

√
a)∗ und analog zu III, 1.1, Satz 1 folgt daraus,

dass mit
f ′ = X2

1 − aX2
2 − b′X2

3

gilt
f repr 0 in k ⇐⇒ f ′ repr 0 in k für k = Q, Qv, v ∈ V

Insbesondere repräsentiert f ′ nach Vorauss. die 0 in allen Qv.
Es ist |b′| = |(t2 − a)/b| ≤ |t2/b| + |a/b| ≤ |b| /4 + 1 < |b| (wegen |b| ≥ 2). Zerlege b′ = b′′u2

mit b′′, u ∈ Z \ {0} und b′′ quadratfrei. |b′′| ≤ |b′| < |b| ist klar. Wir können nun die
Induktionsvoraussetzung auf die zu f ′ äquivalente quadr. Form

f ′′ = X2
1 − aX2

2 − b′′X2
3

anwenden. Weil diese nun die 0 in Q repräsentiert, trifft das auch auf f ′ und damit auch auf
f zu.

iii) n = 4.
Es ist f = aX2

1 + bX2
2 − (cX2

3 + dX2
4 ). Sei v ∈ V . Weil fv repr 0 existiert nach 1.6, Satz 3’,

Kor. 2 (a⇒b) ein xv ∈ Q∗
v, das repräsentiert wird von aX2

1 + bX2
2 und von cX2

3 + dX2
4 . Nach

Th.6, Kor. ii) heißt das, dass

(xv,−ab)v = (a, b)v und (xv,−cd)v = (c, d)v für alle v ∈ V.

Wir können nun III, 2.2, Theorem 4 anwenden und erhalten ein x ∈ Q∗ mit

(x,−ab)v = (a, b)v und (x,−cd)v = (c, d)v für alle v ∈ V

Die quadr. Form aX2
1 + bX2

2 −xZ2 repräsentiert 0 in jedem Qv nach Theorem 6, Kor. ii) und
deshalb nach Fall ii): aX2

1 + bX2
2 − xZ2 repr 0 in Q. Analog zeigt man, dass cX2

3 + dX2
4 −

xZ2 repr 0 in Q, und mit 1.6, Satz 3’, Kor. 2 (c⇒a) folgt, dass f die 0 repräsentiert.

iv) n ≥ 5.

Wir verwenden Induktion nach n. Wir setzen f = h
.
− g mit h = a1X

2
1 + a2X

2
2 und

g = −(a3X
2
3 + · · ·+anX

2
n). Sei S = {2,∞}∪{p ∈ P : vp(ai) 6= 0 für ein i ≥ 3}. S ist endlich.

Sei v ∈ S. Weil fv repr 0 existiert ein av ∈ Qv das repräsentiert wird von h und g. Für jedes
v ∈ S gibt es also av, xv,i ∈ Qv, i = 1, . . . n mit

h(xv,1, xv,2) = av = g(xv,3, . . . , xv,n).

Die Menge der Quadrate von Q∗
v ist offen, die Abbildung Qv × Qv → Qv, (x1, x2) 7→

h(x1, x2)/av ist stetig für jedes v ∈ S, also folgt aus dem Näherungssatz (III, 2.2, Lem-
ma 2) die Existenz von x1, x2 ∈ Q, a := h(x1, x2) so dass a/av ∈ Q∗

v
2 für alle v ∈ S.
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Sei f1 = aZ2
.
− g. Ist v ∈ S, dann repräsentiert g av, also auch a (weil a/av ein Quadrat

ist), also repräsentiert f1 die 0 in Qv. Ist v 6∈ S, (also v ∈ P \ S) dann sind die Koeffizienten
−a3, . . . ,−an von g v-adische Einheiten, ebenso wie −dv(g) (nach Def. von S), und weil v 6= 2
(2 ∈ S) ist εv(g) = 1 (Berechnungsformel in III, 1.2, Lemma 2). Damit ist (−1,−dv(g)) =
1 = εv(g), also nach Th. 6, Kor. iii), iv) repräsentiert g a.
Für jedes v ∈ V repräsentiert f1 die 0 in Qv, und da der Rang von f1 gleich n − 1 ist,
repräsentiert f1 nach Induktionsvoraussetzung die 0 auch in Q. Also repräsentiert g a in Q,
und weil h repr a nach Def. von a, repräsentiert f die 0.

♣
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