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§2. Quadratische Formen iiber Q,

2.3. Klassifikation

Theorem 7. Zwei quadratische Formen tber Q, sind dquivalent gdw. sie den gleichen Rang,
die gleiche Diskriminante und die gleiche Invariante € haben.

Beweis. Dass zwei dquivalente quadr. Formen die gleichen Invarianten haben, ist klar nach
ihren Definitionen. Die Umkehrung beweisen wir mit Induktion nach dem (nach Vor.) ge-
meinsamen Rang n der quadr. Formen f und g.
Der Fall n = 0 ist trivial (f = 0 = g ist die einzige quadr. Form).
Ist n > 1, dann folgt aus Th. 6, Kor., dass f und ¢ dieselben Elemente von k*/ k*? reprisen-
tieren, es gibt also ein a € k* das von f und von g repréisentiert wird. Deshalb haben wir
(nach 1.6, 3’, Kor. 1)

f~aZ?+ fund g~ aZ?+ ¢
mit quadr. Formen f’,¢' vom Rang n — 1. Es ist d(f') = d(f)/a = d(g)/a = d(g') und
e(f) =e(f)/(a,d(f") = e(g)/(a,d(q")) = e(¢'). Also haben f’ ¢ die gleichen Invarianten
und nach Induktionsvoraussetzung ist f' ~ ¢’, also auch f ~ g. s

Korollar. Bis auf Aquivalenz existiert genau eine quadr. Form vom Rang 4 die nicht die 0

reprisentiert. Seien a,b € Q, mit (a,b) = —1, dann ist das die Form z* — ax* — by? + abt®.
Beweis. Nach Theorem 6 wird eine solche Form durch die Invarianten d = 1,e = —(—1, —1)
charakterisiert. Nachrechnen zeigt, dass f = 2% — az? — by? + abt* diese Invarianten hat
(5(f> = (—CL, _b)<ab7 ab) = (_17 —1)(@, b) = _(_17 _1>> &

Bemerkung. Diese quadr. Form ist die reduzierte Norm des (bis auf Isomorphie eindeutig
bestimmten) Schiefkérpers vom Grad 4 iiber Q,, dem ”Quaternionenkérper tiber Q,” mit
der Basis B = {1,1, j, k}, wobei i* = a, j2 = b,ij = k = —ji, (a,b) = —1.

(Ist @« = z + @i + yj + tk ein Quaternion iiber Q,, dann ist N(a) := det(Mp(l,)) =
(22 — ax® — by? + abt?)?.)



Satz 6. Sein > 1,d € Q;;/Q;Q,e = +1. FEs existiert eine quadr. Form f vom Rang n mit
d(f) = d,e(f) = ¢ genau dann, wenn n = 1,6 =1 oder n = 2,d # —1 oder n = 2,e = 1
oder n > 3.

Beweis. Der Fall n = 1 ist trivial (¢(f) = 1 und d(f) = d fiir f ~ dX?).

Ist n =2, dann ist f ~ aX? + bY?, und es gilt d(f) = -1 = &(f) = (a,b) = (a,—ab) = 1,
also kann nicht gleichzeitig d(f) = —1 und £(f) = —1 sein (das zeigt ”"=-"). Falls umgekehrt
d=—1,e =1, hat f = X?—Y? diese Invarianten, ist aber d # —1, dann existiert ein a € Q;
mit (a,—d) = e und f = aX? + adY? leistet das Gewiinschte.

Ist n = 3, dann sei —d # a € Q;/ @;‘,2. Wie eben gezeigt wurde, existiert eine quadr. Form g
vom Rang 2 mit d(g) = ad, e(g) = €(a, —d). Dann hat f = aZ?+ g die Invarianten d und e.
Ist schliesslich n > 4, dann gibt es ein ¢ vom Rang 3 mit den vorgegebenen Invarianten und
f=9(X1, X9, X3) + X7 + -+ + X2 hat dieselben Invarianten. )

Korollar. Die Anzahl der Aquivalenzklassen quadr. Formen vom Rang n iiber Q, st
firn ‘ falls p # 2 ‘ falls p=2

=1 4 8
=2 7 15
>3 8 16

Beweis. d(f) kann 4 Werte annehmen fiir p # 2 und 8 Werte fiir p = 2, e(f) kann 2 Werte
annehmen. Mit den Einschriankungen aus Satz 6 ergeben sich die Anzahlen. &

2.4. Der reelle Fall

Sei f eine quadr. Form vom Rang n iiber R. f ist dquivalent zu
X12~|—---+X3—Y12—---—Y82

mit 7, s € Ny und r + s = n. Das Paar (r, s) hingt nur von f ab, es heifit die Signatur von
f. f heiBt definit, falls 7 = 0 oder s = 0, sonst indefinit (genau in diesem Fall reprisentiert
f die 0).

Die Invarianten e(f) und d(f) sind definiert wie im Fall Q,, und wegen (—1,—1) = —1
ergeben sich die Formeln

1 fallss=0,1 (mod 4)
—1 falls s=2,3 (mod 4)

1 fallss=0 (mod 2)
—1 fallss=1 (mod 2)

Die Werte von d(f) und e(f) bestimmen also den Wert von s mod 4, insbesondere ist f im
Fall n < 3 bis auf Aquivalenz eindeutig durch d(f) und £(f) bestimmt.

Man sieht leicht, dass die Teile i), ii), iii) von Theorem 6 und seinem Korollar auch fiir R
gelten (denn in den Beweisen wurde nur die Regularitat des Hilbert-Symbols benutzt), und
dass Teil iv) nicht fiir R zutrifft.



§3. Quadratische Formen iiber QQ

Alle quadratischen Formen f die wir in diesem Abschnitt betrachten, sollen Koeffizienten in
Q haben und nichtdegeneriert sein.

3.1. Invarianten einer quadr. Form

Wie in Kapitel III, Abschnitt 2 bezeichnen wir mit V' die Menge der Primzahlen zusammen
mit dem Symbol oo und setzen Q. = R.

Sei f ~ a1 X? + - + a,X? nichtdegeneriert. Wir ordnen dieser quadr. Form folgende Inva-
rianten zu:

a) Die Diskriminante d(f) = a; - - - a, € Q*/Q*?

b) Sei v € V. Dann sei f, die quadr. Form iiber Q, mit denselben Koeffizienten wie f
(wobei man die Injektion Q — Q, benutzt). Die Invarianten von f, bezeichnen wir mit
d,(f) und e,(f). Es ist klar, dass d,(f) das Bild von d(f) ist unter der kanonischen
Abbildung Q/Q** — Q,/Q;?. Es ist £,(f) = [1,,(ai, a;), und die Produktformel aus
(I1L, 2.1, Theorem 3) liefert [, oy .(f) = L.

c¢) Die Signatur (r, s) der reellen quadr. Form f.

Die Invarianten d,(f),e,(f), (r,s) heiBen lokale Invarianten von f.

3.2. Reprisentation einer Zahl durch eine quadr. Form

Theorem 8 (Hasse-Minkowski). f repr 0 & Vv € V. f, repr 0. (D.h. f hat eine "glo-
bale” Nullstelle gdw. f "iberall lokal” eine Nullstelle hat.)

Beweis. ”7=": Klar.
7«<": Schreibe f = a1 X? + -+ + @, X2, a; € Q*. Indem man a, f statt f betrachtet, kann
man zuséatzlich a; = 1 annehmen. Wir unterscheiden mehrere Féalle.

i)n=2.
Es ist f = X7 — aX3 und weil fo repr 0 ist a > 0. Zerlege a in der Form a = [, p®. Da

*2

Jp die 0 reprisentiert, ist a € Q;”,

Quadrat in Q und f repr 0.

ii) n = 3 (Legendre).

Es ist f = X7 — aX? — bX2. Indem wir a und b mit Quadraten multiplizieren, kénnen
wir annehmen, dass a und b quadratfreie ganze Zahlen sind, und oBdA sei |a| < |b]. Wir
verwenden Induktion nach m = |a| + |b| € N.

Ist m =2, dann ist f = X7 + X2+ X2. Der Fall f = X? + X2 + X2 entfillt, weil f., repr 0,
in allen anderen Féllen repréisentiert f die 0.

Ist m > 2, dann ist |b| > 2 und wir schreiben b = +p; - - - px mit pw. versch. Primzahlen p;.
Sei p eine dieser p;, wir werden zeigen, dass a ein Quadrat modulo p ist.

Das ist klar, wenn a = 0 (mod p). Andernfalls ist a eine p-adische Einheit. Nach Voraus-
setzung existiert ein Tupel (z,y,2) € (Q,)* \ {0} mit 2* — az® — by? = 0 und wir kdénnen
annehmen, dass es primitiv ist (I, 2.1, Satz 6). Wir haben dann 2? —ax? = 0 (mod p) (weil
plb).

also ist v,(a) gerade. Weil das fiir alle p gilt, ist a ein



Falls nun z = 0 (mod p), dann wiire auch z = 0 (mod p), und dann wire by? = 0 (mod p?).
Weil aber v,(b) = 1, heifit dass y = 0 (mod p), im Widerspruch zur Primitivitdt der Losung.
Es ist also x Z 0 (mod p), und deshalb ist a ein Quadrat modulo p.
Nach dem Chin. Restsatz ist dann a auch ein Quadrat modulo b.
Es existieren also ganze Zahlen ¢,V mit |¢t| < |b| /2 und t? = a+bb'. Die Gleichung b/ = t*—a
zeigt, dass b’ eine Norm der Erweiterung k(+/a)/k ist fiir k = Q und alle Q, (egal ob \/a € Q,
[dann b0’ = N(t* — a)] oder nicht [dann b0’ = N (¢ + +/a)]). Analog zum Beweis von III, 1.1,
Satz 2 iii) folgt b € Nk(y/a)* < v?0' € Nk(y/a)* und analog zu 111, 1.1, Satz 1 folgt daraus,
dass mit
f=X!—aX VX3

gilt

frepr0ink <= f'repr Oink fir k = Q,Q,,v eV
Insbesondere reprisentiert f’ nach Vorauss. die 0 in allen Q,.
Es ist [b/| = |(£* — a)/b] < |t3/b] + |a/b] < |b| /4 + 1 < |b| (wegen |b| > 2). Zerlege V' = b"u?
mit b",u € Z \ {0} und 0" quadratfrei. [b"| < |B/| < |b] ist klar. Wir kénnen nun die
Induktionsvoraussetzung auf die zu f’ dquivalente quadr. Form

"= X —aX: VX2

anwenden. Weil diese nun die 0 in Q reprisentiert, trifft das auch auf f’ und damit auch auf

f zu.

iii) n = 4.

Esist f = aX? +bXZ — (cX2 4+ dX?). Sei v € V. Weil f, repr 0 existiert nach 1.6, Satz 3’,
Kor. 2 (a=D) ein z, € Q}, das reprisentiert wird von aX? +bX3 und von cX? + dX}. Nach
Th.6, Kor. ii) heifit das, dass

(zy, —ab), = (a,b), und (z,, —cd), = (¢, d), fur alle v € V.
Wir kénnen nun III, 2.2, Theorem 4 anwenden und erhalten ein z € Q* mit
(z,—ab), = (a,b), und (z, —cd), = (¢,d), fir allev € V

Die quadr. Form aX? +bX2 — 2Z? reprisentiert 0 in jedem Q, nach Theorem 6, Kor. ii) und
deshalb nach Fall ii): aX? + 0X2 — xZ% repr 0 in Q. Analog zeigt man, dass cX? + dX7 —
xZ? repr 0 in Q, und mit 1.6, Satz 3’, Kor. 2 (c=-a) folgt, dass f die 0 repriisentiert.

iv) n > 5.

Wir verwenden Induktion nach n. Wir setzen f = h — g mit h = a;X? + a3 X? und
g=—(a3X3+ --+a,X2).Sei S ={2,00}U{p € P: vy(a;) # 0 fiir ein i > 3}. S ist endlich.
Seiv € S. Weil f, repr 0 existiert ein a, € Q, das repréisentiert wird von A und g. Fiir jedes
v e S gibt es also a,,z,; € Q¢ =1,...7n mit

h(xv,lv xv,Q) = Uy = g(xv,?n cee 7xv,n)-

Die Menge der Quadrate von Qf ist offen, die Abbildung Q, x Q, — Q,, (z1,22) —
h(x1,x2)/a, ist stetig fur jedes v € S, also folgt aus dem Niherungssatz (III, 2.2, Lem-
ma 2) die Existenz von 1,2, € Q,a := h(zy,x5) so dass a/a, € Q:? fiir allev € S.



Sei fi = aZ? — g. Ist v € S, dann repriisentiert g a,, also auch a (weil a/a, ein Quadrat
ist), also représentiert f; die 0 in Q,. Ist v € S, (also v € P\ §) dann sind die Koeffizienten
—as, ..., —a, von g v-adische Einheiten, ebenso wie —d,(g) (nach Def. von S), und weil v # 2
(2 € S) ist g,(g) = 1 (Berechnungsformel in III, 1.2, Lemma 2). Damit ist (—1, —d,(g)) =
1 =¢,(g), also nach Th. 6, Kor. iii), iv) représentiert g a.

Fiir jedes v € V repréisentiert f; die 0 in Q,, und da der Rang von f; gleich n — 1 ist,
reprasentiert f; nach Induktionsvoraussetzung die 0 auch in Q. Also reprasentiert g a in Q,
und weil h repr a nach Def. von a, reprisentiert f die 0.

)



