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”Quadratische Formen über p-adischen Zahlen”
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1 Lokale Eigenschaften

k bezeichne in diesem Abschnitt R oder ein Qp (p prim).

1.1 Definition und erste Eigenschaften

Definition. Seien a, b ∈ k∗. Falls die Gleichung

ax2 + by2 = z2 (H)

eine Lösung (x, y, z) 6= (0, 0, 0) in k3 hat, setze (a, b) = 1, sonst setze (a, b) = −1.
(a, b) heisst das Hilbert-Symbol von a und b bezüglich k.

Bemerkung. Sind c, d ∈ k∗, dann ist (ac2, bd2) = (a, b), denn hat ac2x2 + bd2y2 = z2 eine
Lösung (x, y, z), dann ist (cx, dy, z) eine Lösung von ax2 + by2 = z2, hat ax2 + by2 = z2 eine
Lösung (x, y, z), dann ist (x/c, y/d, z) eine Lösung von ac2x2 + bd2y2 = z2.
Bezeichnet k∗2 = {a2 : a ∈ k∗} die multiplikative Gruppe der Quadrate in k∗, dann definiert
also das Hilbertsymbol eine Abbildung k∗/k∗2×k∗/k∗2 → {±1}. (Sprich k∗/k∗2 als ”k Stern
modulo Quadrate”).

Erinnerung. Folgende Aussagen aus der Algebra werden als bekannt vorausgesetzt:
Sei K ein Körper und b ∈ K. Sei L := K(

√
b) und N : L→ K die Norm von L über K.

Falls b ein Quadrat in K ist, dann ist L = K, N(x) = x und N(L∗) = K∗.
Falls b kein Quadrat in K ist, dann ist L eine quadratische Erweiterung von K. Sei β ∈ L
mit β2 = b. Es ist L = {x+ βy : x, y ∈ K} und N(x+ βy) = (x+ βy)(x− βy) = x2 − by2.
N(L∗) ist eine Untergruppe von K∗.

Satz 1. Seien a, b ∈ k∗, kb := k(
√
b). Dann ist (a, b) = 1⇔ a ∈ N(k∗b ).

Beweis. 1. Fall: b ist ein Quadrat in k. b = c2, c ∈ k∗. Dann ist kb = k, N(k∗b ) = k∗ 3 a
und (H) hat die Lösung (0, 1, c). Damit sind beide Seiten der Behauptung erfüllt.

2. Fall: b ist kein Quadrat in k. Sei β ∈ kb mit β2 = b. Es ist N(z + βy) = z2 − by2.

”⇐”: Ist a ∈ N(k∗b ), dann ∃y, z ∈ k : a = z2− by2 und es ist a · 12 + by2 = z2, also (a, b) = 1.

”⇒”: Ist (a, b) = 1, dann ∃(0, 0, 0) 6= (x, y, z) ∈ k3 : ax2 + by2 = z2. Wäre x = 0, dann wäre
by2 = z2, und weil y 6= 0 (sonst wäre auch z = 0) wäre b = (z/y)2 ∈ k∗2, aber b ist kein
Quadrat. Also ist x 6= 0 und mit ξ = (z/x) + β(y/x) ist N(ξ) = z2/x2 − by2/x2 = a.
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Satz 2. Seien a, a′, b, c ∈ k∗, a 6= 1 in Formel ii)2) und iv)2).

i) (a, b) = (b, a), (a, c2) = 1
ii) (a,−a) = 1, (a, 1− a) = 1
iii) (a, b) = 1⇒ (a′, b) = (aa′, b)
iv) (a, b) = (a,−ab), (a, b) = (a, (1− a)b)

Beweis. i) 1) klar nach Def., 2) (0, 1, c) ist Lsg. von (H)
ii) 1) (1, 1, 0), 2) (1, 1, 1) sind Lsg. von (H)
iii) (a, b) = 1 ⇒ a ∈ N(k∗b ). Weil N(k∗b ) ⊆ k∗ eine Untergruppe ist, ist a′ ∈ N(k∗b ) ⇔ aa′ ∈
N(k∗b ). Die Behauptung folgt mit Satz 1.
iv) 1) (−a, a) = 1⇒ (b, a) = (−ab, a), 2) ((1− a), a) = 1⇒ (b, a) = ((1− a)b, a)

Bemerkung. Formel iii) ist ein Spezialfall von

v) (aa′, b) = (a, b)(a′, b).

Diese Formel (zusammen mit der Symmetrie) bedeutet die Bilinearität des Hilbert-Symbols
und wird gleich bewiesen.

1.2 Berechnung des Hilbert-Symbols (a, b)

Wir geben zunächst eine Berechnungsvorschrift für das Hilbert-Symbol in R an (Satz 3),
dann für Qp, p > 2 (Lemma 2 bis 4, Satz 4) und schließlich für Q2 (Lemma 5 bis 7, Satz 5),
alle Berechnungsvorschriften vereint sollen dann Theorem 1 bilden.

Satz 3. Seien a, b ∈ R∗, dann ist (a, b) =

{
1 falls a > 0 oder b > 0
−1 falls a < 0 und b < 0

.

Beweis. Es ist R∗2 = {x ∈ R : x > 0}.
Falls a > 0 oder b > 0, dann ist (a, b) = 1 nach Satz 2.i). Falls a < 0 und b < 0, dann ist
(a, b) = (−1,−1) = −1, denn −x2 − y2 = z2 hat (in R) nur die triviale Lösung.

Theorem (Chevalley-Warning). Seien 0 6= f1, . . . , fn ∈ Fp[X1, . . . Xr] Polynome mit∑n
i=1 deg fi < r. Sei L := {x ∈ (Fp)

r : ∀i : fi(x) = 0}. Dann ist |L| ≡ 0 (mod p).
Daraus folgt, dass f = aX2 + bY 2 + cZ2 ∈ Fp[X,Y, Z] eine nichttriviale Nullstelle hat.

Lemma 1. Sei v ∈ Z∗p. Wenn (p, v) = 1, dann hat px2 + vy2 = z2 auch eine Lösung (x, y, z)
bei der x ∈ Zp und y, z ∈ Z∗p.

Beweis. Wenn (p, v) = 1, dann hat nach Satz 6 (a⇒b) aus Kapitel II, 2.1 die Gleichung px2+
vy2 = z2 eine primitive Lösung (x, y, z) ∈ (Zp)

3. Wir zeigen, dass (x, y, z) die gewünschte
Eigenschaft hat.
Wenn nicht y, z ∈ Z∗p wären, dann wäre y ≡ 0 (mod p) oder z ≡ 0 (mod p). Wegen
vy2 ≡ z2 (mod p) und v 6≡ 0 (mod p) wäre dann y ≡ 0 ≡ z (mod p), also px2 ≡ 0 (mod p2).
Damit wäre x2 ≡ 0 (mod p) und also x ≡ 0 (mod p), im Widerspruch zur Primitivität der
Lösung.

Lemma 2. Seien p > 2, u, v ∈ Z∗p. Dann ist (u, v) = 1.
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Beweis. Die Gleichung ux2 + vy2 − z2 = 0 hat nach dem Korollar zum Theorem von
Chevalley-Warning eine nichttriviale Lösung modulo p. Weil die Diskriminante dieser qua-
dratischen Form eine p-adische Einheit (−uv) ist, folgt aus (Kor.2 zu Th.1 in II,2.2), dass
es eine p-adische Lösung gibt, also ist (u, v) = 1.

Definition. Ist p > 2, u ∈ Z∗p, dann sei
(
u
p

)
:=
(
u mod p

p

)
∈ {−1, 1}.

Lemma 3. Seien p > 2, u, v ∈ Z∗p. Dann ist (pu, v) =
(
v
p

)
.

Beweis. Wegen (u, v) = 1 (nach Lemma 2) gilt nach Satz 2.iii) (pu, v) = (p, v).

Falls v ein Quadrat ist, dann ist (p, v) = 1 =
(
v
p

)
nach Satz 2.i).

Falls v kein Quadrat ist, dann ist
(
v
p

)
= −1. Wäre nun (p, v) = 1, dann gäbe es nach

Lemma 1 eine primitive Lösung, bei der y und z Einheiten sind. Es wäre dann v ≡ (z/y)2

(mod p), aber v ist hier kein Quadrat. Also muss (p, v) = −1 sein.

Lemma 4. Seien p > 2, u, v ∈ Z∗p. Dann ist (pu, pv) = (−1)(p−1)/2
(
u
p

)(
v
p

)
.

Beweis. Nach Satz 2.iv) ist (pu, pv) = (pu,−pupv) = (pu,−uv).

Aus Lemma 3 folgt (pu,−uv) =
(
−uv
p

)
(setze die Einheit −uv für v).

Wegen
(
−1
p

)
= (−1)(p−1)/2 zerfällt

(
−uv
p

)
in die rechte Seite und wir sind fertig.

Satz 4. Sei p > 2, a, b ∈ Q∗p, a = pαu, b = pβv, wobei α, β ∈ Z, u, v ∈ Z∗p, dann gilt

(a, b) = (−1)αβε(p)
(
u

p

)β(
v

p

)α
Dabei ist ε(p) = p−1

2
mod 2 ∈ Z/2Z.

Beweis. Auf beiden Seiten der Gleichung ist nur wichtig, ob α und β gerade oder ungerade
sind. Man kann also zu ihren Resten modulo 2 übergehen. Durch die Symmetrie des Hilbert-
Symbols und der rechten Seite sind nur noch drei Fälle zu unterscheiden.

Fall 1: α = 0, β = 0 Das ist Lemma 2.
Fall 2: α = 1, β = 0 Das ist Lemma 3.
Fall 3: α = 1, β = 1 Das ist Lemma 4.

Lemma 5. Seien u, v ∈ U = Z∗2, dann ist (u, v) = 1⇔ u ≡ 1 (mod 4) ∨ v ≡ 1 (mod 4).

Beweis.
”
⇒“: Sei ux2 + vy2 = z2 nichttrivial lösbar. Es gibt dann (nach Satz 6 aus Kapitel

II, 2.1) eine primitive Lösung (x, y, z) ∈ (Z2)3. Nehmen wir nun an, es wäre u ≡ −1
(mod 4) und v ≡ −1 (mod 4). Die primitive Lösung erfüllt dann 0 ≡ z2 + x2 + y2 (mod 4).
Weil aber 0, 1 die Quadrate von Z/4Z sind, kann diese Kongruenz nur erfüllt sein, wenn
alle drei Variablen kongruent 0 modulo 2 sind, was der Primitivität widerspricht. Also ist
u ≡ 1 mod 4 oder v ≡ 1 mod 4.

”
⇐“: Sei u ≡ 1 (mod 4), dann ist u ≡ 1 (mod 8) oder u ≡ 5 (mod 8). Im ersten Fall ist u

ein Quadrat (Th.4 in II,3.3), also (u, v) = 1, im zweiten Fall ist u + 4v ≡ 1 (mod 8), also
u+ 4v ein Quadrat, und es gibt ein w ∈ Z2 mit w2 = u+ 4v. Die Gleichung ux2 + vy2 = z2

hat also die Lösung (1, 2, w). Damit ist (u, v) = 1. Analog folgt aus v ≡ 1 (mod 4), dass
(u, v) = 1.
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Lemma 6. Sei v ∈ Z∗2. Dann ist (2, v) = 1⇔ v ≡ ±1 (mod 8).

Beweis.
”
⇒“: Falls (2, v) = 1, dann ist 2x2 +vy2 = z2 nichttrivial lösbar und nach Lemma 1

existiert eine Lösung x, y, z ∈ Z2 mit y, z 6≡ 0 (mod 2). Für diese Lösung gilt y2 ≡ z2 ≡ 1
(mod 8), und damit v ≡ 1 − 2x2 (mod 8). Weil 0, 1, 4 die Quadrate von Z/8Z sind, folgt
daraus, dass v ≡ ±1 (mod 8).

”
⇐“: Falls v ≡ 1 (mod 8), dann ist v ein Quadrat und (2, v) = 1. Falls v ≡ −1 (mod 8),

dann hat 2x2 + vy2 = z2 modulo 8 die Lösung (1, 1, 1) und nach (Kor.3 zu Th.1 in II,2.2)
liefert diese Näherungslösung eine exakte Lösung. Damit ist (2, v) = 1.

Lemma 7. Seien u, v ∈ Z∗2, dann ist (2u, v) = (2, v)(u, v).

Beweis. Wegen Satz 2.iii) 1 ist das nur noch im Fall (2, v) = (u, v) = −1 zu beweisen, also
falls v ≡ ±3 (mod 8) (nach Lemma 6) und u, v ≡ 3 (mod 4) (nach Lemma 5). Da beide
Bedingungen gleichzeitig erfüllt sind, gilt u ≡ 3 (mod 8) oder u ≡ 7 (mod 8) und v ≡ 3
(mod 8).

Falls u ≡ 3 (mod 8), v ≡ 3 (mod 8), dann sind u′ := 3/u ≡ 1 (mod 8) und v′ := −5/v ≡ 1
(mod 8) Quadrate in Q∗2, damit ist uu′ = 3, vv′ = −5 und (2u, v) = (6,−5). 6x2 − 5y2 = z2

hat die Lösung (1, 1, 1), also ist (2u, v) = 1.

Falls u ≡ 7 (mod 8), v ≡ 3 (mod 8), dann sind u′ := −1/u ≡ 1 (mod 8) und v′ := 3/v ≡ 1
(mod 8) Quadrate in Q∗2, damit ist uu′ = −1, vv′ = 3 und (2u, v) = (−2, 3). −2x2 +3y2 = z2

hat die Lösung (1, 1, 1), also ist (2u, v) = 1.

Definition. Für u ∈ Z∗2 sei ε(u) := u−1
2

mod 2, ω(u) := u2−1
8

mod 2 ∈ Z/Z2.
ε und ω sind Homomorphismen von Z∗2 nach Z/2Z, d.h. ε(xy) = ε(x) + ε(y), ω(xy) =
ω(x) + ω(y).

Beweis. Seien x, y ≡ 1 (mod 2), dann ist (x− 1), (y− 1) ≡ 0 (mod 2), also (x− 1)(y− 1) =
xy−(x+y)+1 = (xy−1)−(x+y−2) ≡ 0 (mod 4), damit ist ε(xy) = xy−1

2
≡ x+y−2

2
= ε(x)+

ε(y) (mod 2). Es ist (x2−1), (y2−1) ≡ 0 (mod 8), also (x2−1)(y2−1) = x2y2−(x2+y2)+1 =

(x2y2 − 1)− (x2 + y2 − 2) ≡ 0 (mod 16), damit ist ω(xy) = x2y2−1
8
≡ x2+y2−2

8
= ω(x) + ω(y)

(mod 2).

Satz 5. Seien a, b ∈ Q∗2, a = 2αu, b = 2βv, wobei α, β ∈ Z, u, v ∈ U, dann gilt

(a, b) = (−1)ε(u)ε(v)+αω(v)+βω(u)

Beweis. Auch hier kann man zu den Resten von α und β modulo 2 übergehen, und auch
hier sind beide Seiten symmetrisch.

Fall 1: α = 0, β = 0 Zu zeigen ist (u, v) = (−1)ε(u)ε(v).
Das ist Lemma 5, denn (−1)ε(u)ε(v) = 1⇔ u ≡ 1 (mod 4) ∨ v ≡ 1 (mod 4).

Fall 2: α = 1, β = 0 Zu zeigen ist (2u, v) = (−1)ε(u)ε(v)+ω(v).
Wegen (−1)ω(v) = 1⇔ v ≡ ±1 (mod 8) und Lemma 6 wissen wir (2, v) = (−1)ω(v).
Mit Lemma 7 haben wir (2u, v) = (2, v)(u, v) = (−1)ω(v)(−1)ε(u)ε(v).

Fall 3: α = 1, β = 1 Zu zeigen ist (2u, 2v) = (−1)ε(u)ε(v)+ω(v)+ω(u).

1(2, v) = 1⇒ (u, v) = (2u, v), (u, v) = 1⇒ (2, v) = (2u, v)
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Nach Satz 2.iv) ist (2u, 2v) = (2u,−4uv) = (2u,−uv). Gerade gezeigt wurde (2u,−uv) =
(−1)ε(u)ε(−uv)+ω(−uv) (nimm −uv für v in Fall 2).
Es ist ε(xy) = ε(x) + ε(y), ω(xy) = ω(x) + ω(y), ausserdem ist ε(−1) = 1, ε(u)(1 + ε(u)) =
0, ω(−1) = 0. Also ist ε(u)ε(−uv) + ω(−uv) = ε(u)ε(v) + ω(u) + ω(v).

Theorem 1. Wir fassen die Aussagen der Sätze 3, 4 und 5 zusammen zum Theorem 1.

Theorem 2. Das Hilbert-Symbol ist eine reguläre Bilinearform des F2 -Vektorraums k∗/k∗2

in den F2 -Vektorraum {±1}.

Die Bilinearform (a, b) nach {±1} heisst regulär (oder nicht ausgeartet), wenn für jedes b ∈ k∗
mit ∀a ∈ k∗ : (a, b) = 1 gilt, dass b ∈ k∗2 ist. Das ist gleichbedeutend damit, dass es zu
jedem Nichtquadrat b ∈ k∗ \ k∗2 ein a ∈ k∗ gibt mit (a, b) = −1.

Beweis. k∗/k∗2 ist ein F2 -Vektorraum, denn:
Man prüft leicht nach, dass jede (additiv geschriebene) abelsche Gruppe G mit der Eigen-
schaft a + a = 0∀a ∈ G mit der Skalarmultiplikation 0a = 0, 1a = a einen F2 -Vektorraum
bildet.
k∗/k∗2 erfüllt diese Bedingung (mit der Multiplikation der Restklassen als Vektoraddition),
denn ∀u ∈ k∗ : u2 ∈ k∗2, also ist k∗/k∗2 ein F2 -Vektorraum (mit der Skalarmultiplikation
aλ für a ∈ k∗/k∗2, λ ∈ F2).

R
∗/R∗2 hat die Repräsentanten {1,−1} und bildet einen eindimensionalen F2 -Vektorraum

mit der einzigen Basis {−1}. Die Bilinearität ist nur noch im Fall (a, b) = (a′, b) = −1 zu
zeigen (die anderen Fälle sind in Satz 2.iii) gezeigt): 1 = (1,−1) = (−1,−1)(−1,−1) =
−1 · −1. Dass das Hilbert-Symbol für R regulär ist, folgt aus (−1,−1) = −1.

Für p ≥ 2 folgt die Bilinearität des Hilbert-Symbols in Qp aus Satz 4 und 5.

Nach (Kor. zu Th.3 in II,3.3) hat Q∗p/Q
∗
p

2 für p > 2 die Repräsentanten 1, p, u, pu mit u ∈ Z∗p,(
u
p

)
= −1. Q∗p/Q

∗
p

2 ist ein 2-dimensionaler F2-Vektorraum, eine Basis ist {p, u}. Es folgt

aus (u, p) = (u, pu) = −1, dass das Hilbert-Symbol regulär ist.

Nach (Kor. zu Th.4 in II,3.3) hat Q∗2/Q
∗
2

2 die Repräsentanten u, 2u mit u = ±1,±5. Q∗2/Q
∗
2

2

ist ein 3-dimensionaler F2-Vektorraum, eine Basis ist {2,−1, 5}. Aus (−1,−1) = (−1,−5) =
(2u, 5) = −1 folgt, dass (a, b) regulär ist.

Korollar 1. Wenn b kein Quadrat ist, dann ist N(k∗b ) eine Untergruppe mit Index 2.

Beweis. Die Abbildung φb : k∗ → {±1}, φb(a) = (a, b) ist ein Homomorphismus (das folgt
aus der Bilinearität von (a, b)), hat nach Satz 1 den Kern N(k∗b ), und ist surjektiv, da
(a, b) regulär ist. Also definiert φb einen Isomorphismus k∗/N(k∗b ) → {±1}. Damit ist
[k∗ : N(k∗b )] = 2.

Bemerkung. Wenn wir (a, b) = (−1)[a,b] schreiben mit [a, b] ∈ F2, dann ist [ · , · ] : k∗/k∗2 ×
k∗/k∗2 → F2 eine symmetrische Bilinearform von F2-Vektorräumen, die wir nach Wahl
einer Basis B durch eine Multiplikation mit der darstellenden Matrix beschreiben können:
[x, y] = x̂tAŷ, wobei x̂ der Koordinatenvektor (in (F2)dim) des Vektors x (in k∗/k∗2) ist.

• Für k = R ist B = {−1} die einzige Basis von k∗/k∗2 und A =
(
1
)
.
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• Für k = Qp, p 6= 2 und die Basis B = {p, u} ist A =

(
0 1
1 0

)
falls p ≡ 1 (mod 4) und

A =

(
1 1
1 0

)
falls p ≡ 3 (mod 4).

• Für k = Q2 und die Basis {2,−1, 5} ist A =

0 0 1
0 1 0
1 0 0

.

2 Globale Eigenschaften

Q lässt sich als Teilkörper in jedes Qp und in R einbetten. Seien a, b ∈ Q∗, dann bezeichne
(a, b)p ihr Hilbert-Symbol bezüglich Qp und (a, b)∞ ihr Hilbert-Symbol bezüglich R. Sei P
die Menge der Primzahlen, V := P ∪ {∞}, und Q∞ := R. Dann ist Q dicht in Qv für alle
v ∈ V .

2.1 Produktformel

Theorem 3 (Hilbert). Seien a, b ∈ Q∗. Dann ist (a, b)v = 1 für fast alle v ∈ V (alle bis
auf endlich viele) und es ist

∏
v∈V

(a, b)v = 1.

Beweis. Durch Multiplikation mit rationalen Quadraten kann man a, b als ganze Zahlen
darstellen, ohne irgendeines der Hilbert-Symbole zu ändern: a =

∏n
i=1 pi, b =

∏m
j=1 qj mit

pi, qj ∈ P ∪ {−1} (nicht notwendig verschieden).
Wegen der Bilinearität des Hilbert-Symbols genügt es, das Theorem für den Fall zu be-
weisen, dass a und b selbst Primzahlen oder −1 sind. Denn sei M(x, y) := {v ∈ V :
(x, y)v = −1}. Dann folgt aus (a, b)v =

∏n
i=1

∏m
j=1(pi, qj)v die Beziehung M(a, b) ⊆⋃n

i=1

⋃m
j=1 M(pi, qj) (denn wenn (a, b)v = −1, dann muss mindestens eines der (pi, qj)v =

−1 sein). Wenn nun alle M(pi, qj) als endlich nachgewiesen sind, dann ist M(a, b)
als endliche Vereinigung endlicher Mengen auch endlich. Damit ist

∏
v∈V (a, b)v =∏

v∈V
∏n

i=1

∏m
j=1(pi, qj)v =

∏n
i=1

∏m
j=1

∏
v∈V (pi, qj)v, (weil nur noch endliche Produkte auf-

treten,) und wenn
∏

v∈V (pi, qj)v = 1, dann gilt auch
∏

v∈V (a, b)v = 1.

Fall 1: a = −1, b = −1 Es ist (−1,−1)∞ = (−1,−1)2 = −1 und (−1,−1)v = 1 für
v 6= 2,∞ (Lemma 2 in Abschnitt 1.2), das Produkt ist gleich 1.

Fall 2: a = −1, b = l, l prim Wenn l = 2, dann ist (−1, 2)v = 1 für alle v ∈ V ((−1, 2)2 = 1
nach Lemma 6, (−1, 2)∞ = 1 nach Satz 3, restliche v mit Lemma 2).
Wenn l 6= 2, dann ist (−1, l)v = 1 für v 6= 2, l (Lemma 2 und Satz 3), (−1, l)2 =
(−1)ε(−1)ε(l) = (−1)ε(l) (Fall 2 in Satz 5), (−1, l)l =

(−1
l

)
= (−1)ε(l) (Lemma 3). Das

Produkt ist gleich 1.

Fall 3: a = l, b = l′, l, l′ prim Wenn l = l′, dann folgt aus Satz 2.iv) dass (l, l′)v = (−1, l)v
∀v ∈ V und wir sind im zweiten Fall.
Wenn l 6= l′ und l′ = 2, dann ist (l, 2)v = 1 für v 6= 2, l (Lemma 2), (l, 2)2 = (−1)ω(l) (Fall 2
in Satz 5), (l, 2)l =

(
2
l

)
= (−1)ω(l) (Lemma 3). Das Produkt ist gleich 1.

Wenn l, l′ verschieden und ungleich 2 sind, dann ist (l, l′)v = 1 für v 6= 2, l, l′ (Lemma 2) und
(l, l′)2 = (−1)ε(l)ε(l

′) (Fall 1 in Satz 5), (l, l′)l =
(
l′

l

)
, (l, l′)l′ =

(
l
l′

)
(Lemma 3). Nach dem

Reziprozitätsgesetz ist
(
l′

l

)(
l
l′

)
= (−1)ε(l)ε(l

′), also ist das Produkt gleich 1.
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2.2 Existenz rationaler Zahlen mit vorgegebenen
Hilbert-Symbolen

Theorem 4. Sei I eine endliche Menge, (ai)i∈I mit ai ∈ Q∗, und sei (εi,v)i∈I,v∈V mit εi,v ∈
{±1}. Dann sind die folgenden Aussagen äquivalent:

(a) Es gibt ein x ∈ Q∗, so dass ∀i ∈ I, v ∈ V : (ai, x)v = εi,v.

(b) Die folgenden drei Bedingungen sind erfüllt:

(1) Fast alle εi,v sind gleich 1.

(2) Für alle i ∈ I ist
∏

v∈V εi,v = 1.

(3) ∀v ∈ V : ∃xv ∈ Q∗v : ∀i ∈ I : (ai, xv)v = εi,v.

”(a)⇒(b)”: Die Gültigkeit der Bedingungen (1) und (2) folgt aus Theorem 3, und mit
xv := x ist Bedingung (3) erfüllt. Zum Nachweis der anderen Richtung brauchen wir drei
Lemmas.

Lemma 1 (Chinesischer Restsatz). Seien a1, . . . , an ∈ Z und m1, . . . ,mn ∈ Z paarweise
teilerfremd. Dann gibt es ein a ∈ Z mit a ≡ ai (mod mi) für i = 1, . . . , n.

Lemma 2 (Näherungssatz). Sei S  V endlich. Dann ist das Bild von Q dicht in∏
v∈S Qv.

Beweis. Sei (x̃v)v∈S ∈
∏

v∈S Qv, dann ist zu jedem ε > 0 ein x̃ ∈ Q zu finden, so dass
d(x̃, x̃v) ≤ ε für alle v ∈ S. Das ist für v = p prim gleichbedeutend mit vp(x̃− x̃p) ≥ N für
ein geeignetes N .
Falls ∞ 6∈ S, dann fügen wir ∞ zu S hinzu und beweisen mehr als nötig ist.
Sei (x̃∞, x̃1, . . . , x̃n) ∈ R×Qp1 × . . .×Qpn und seien ε > 0 und Ñ ∈ N beliebig vorgegeben.

Es ist nun ein x̃ ∈ Q zu finden, so dass |x̃− x̃∞| ≤ ε und vpi(x̃− x̃i) ≥ Ñ für alle i.
Durch Multiplikation des Tupels mit einer geeigneten natürlichen Zahl 2 m ≥ 1 erhalten wir
xi := mx̃i ∈ Zpi für i = 1, . . . , n und x∞ := mx̃∞.

Setze M := max{vpi(m)} und N := Ñ +M ∈ N. (Denn 0 ≤ M ∈ Z.) Nach Lemma 1 (mit
mi = pNi , ai ≡ xi (mod pNi )) existiert ein x0 ∈ Z, so dass vpi(x0 − xi) ≥ N für alle i.
Sei nun q ≥ 2 eine zu allen pi teilerfremde Zahl (z.B. eine weitere Primzahl). Die ra-

tionalen Zahlen
{
a
qr

: a ∈ Z, r ∈ N
}

liegen dicht in R.3 Wähle eine Zahl u = a
qr

mit∣∣x0 − x∞ + u(p1 . . . pn)N
∣∣ ≤ ε.

Wir setzen x := x0 + u(p1 . . . pn)N . Für alle i = 1, . . . , n gilt q ∈ Z∗pi , also ist u ∈ Zpi und

vpi(x− xi) = vpi(x0 + u(p1 . . . pn)N − xi)
≥ inf{vpi(x0 − xi)︸ ︷︷ ︸

≥N

, vpi(u)︸ ︷︷ ︸
≥0

+ vpi((p1 . . . pn)N)︸ ︷︷ ︸
=N

} ≥ N

Setzen wir x̃ := x
m

, dann haben wir |x̃− x̃∞| =
∣∣x−x∞

m

∣∣ ≤ ε
m
≤ ε und

vpi(x̃− x̃i) = vpi(
x− xi
m

) = vpi(x− xi)− vpi(m) ≥ N −M = Ñ

2z.B. m :=
∏n
i=1 p

− inf{vpi (xi),0} ∈ N
3x ∈ R, ε > 0, q ∈ N⇒ ∃r ∈ N : q−r < ε, ∃a ∈ Z : |qrx− a| < 1, also |x− a/qr| < ε.
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Lemma 3 (Dirichlet). Wenn a, b ∈ N teilerfremd sind, dann gibt es unendlich viele Prim-
zahlen der Form an+ b. Wird in Kapitel VI bewiesen ohne Verwendung von Resultaten aus
den vorigen Kapiteln.

Beweis von Theorem 4. ”(b)⇒(a)”: Seien die drei Bedingungen erfüllt. Ohne die Hilbert-
Symbole zu verändern, können wir die ai mit den Quadraten ihrer Nenner multiplizieren
und deshalb annehmen, dass alle ai in Z liegen.
Sei S = {2,∞} vereinigt mit der Menge der Primteiler der ai.
Sei T = {v ∈ V : ∃i ∈ I : εi,v = −1}.
S, T ⊆ V . Beide Mengen sind endlich (S klar, T nach Bedingung (1)).

1. Fall: S ∩ T = ∅. Dann ist ∞ 6∈ T . Setze a :=
∏
T , m := 8

∏
(S \ {2,∞}).

Weil S ∩ T = ∅ sind a und m teilerfremd. Nach Lemma 3 existiert eine Primzahl p ≡ a
(mod m) mit p 6∈ S ∪ T . Wir werden zeigen, dass x := ap die gewünschte Eigenschaft
(ai, x)v = εi,v ∀i ∈ I, v ∈ V hat. Seien dazu i ∈ I und v ∈ V beliebig vorgegeben.

I. v ∈ S : Dann ist v 6∈ T und deshalb εi,v = 1. Ist v = ∞, dann ist (ai, x)∞ = 1 wegen
x > 0. Ist v = l eine Primzahl, dann ist x = ap ≡ a2 (mod m), also x ≡ a2 (mod 8) und
x ≡ a2 (mod l). Das zeigt, dass x ein Quadrat in Q∗l ist (s. II,3.3), also ist (ai, x)v = 1.

II. v 6∈ S, v = l prim : Dann gilt ∀k ∈ I : ak ∈ Z∗l (denn l - ak). Da l 6= 2 folgt aus
Theorem 1

∀k ∈ I, b ∈ Q∗l : (ak, b)l =
(ak
l

)vl(b)
II.1. l 6∈ T ∪ {p} : Dann gilt x = ap ∈ Z∗l (denn l - p, l - a =

∏
T ), also vl(x) = 0 und wir

haben (ai, x)l =
(
ai
l

)0
= 1, und wegen l 6∈ T ist εi,l = 1.

II.2. l ∈ T : Dann ist vl(x) = 1 (denn x = ap ist ein Produkt verschiedener Primzahlen,
l | a). Wegen Bedingung (3) existiert ein xl ∈ Q∗l mit ∀k ∈ I : (ak, xl)l = εk,l. Wegen l ∈ T
gibt es ein j ∈ I für das εj,l = −1 und wir haben (aj, xl)l = −1 =

(aj
l

)vl(xl), deshalb muss

vl(xl) ≡ 1 (mod 2) sein, also gilt (ai, x)l =
(
ai
l

)vl(x)
=
(
ai
l

)
=
(
ai
l

)vl(xl) = (ai, xl)l = εi,l.

II.3. l = p : Dann ist nach Theorem 3, den Fällen I, II.1, II.2 sowie Bedingung (2)

(ai, x)p =
∏
v 6=p

(ai, x)v =
∏
v 6=p

εi,v = εi,p

2. Fall: S ∩ T 6= ∅. Aus Kapitel II,3.3 wissen wir, dass die Quadrate in Q∗v eine offene
Untergruppe bilden (auch in R∗). Es gibt also (wegen der Endlichkeit von S) ein N ∈ N, so
dass für alle Primzahlen p ∈ S gilt: Ist x ∈ Q∗p mit vp(x − 1) ≥ N , dann ist x ein Quadrat
in Q∗p.
Von der Bedingung (3) haben wir ein Tupel (xv)v∈S ∈

∏
v∈S Qv (dabei ist jedes xv ∈ Q∗).

Setze M := max {vp(xp) : p ∈ S prim} ∈ Z. Nach Lemma 2 existiert ein x′ ∈ Q∗ mit
vp(x

′ − xp) ≥ N + M für alle Primzahlen p ∈ S und |x′ − x∞| ≤ |x∞/2| in R. Dann ist
vp(x

′/xp − 1) = vp(x
′ − xp)− vp(xp) ≥ N +M −M = N und |x′/x∞ − 1| ≤ 1/2, also ist für

alle v ∈ S die Zahl x′/xv ein Quadrat in Q∗v.
Setzen wir für alle i ∈ I, v ∈ V

ηi,v := εi,v(ai, x
′)v

dann erfüllt die Familie (ηi,v) die Bedingungen (1),(2),(3) und es ist ηi,v = 1 ∀i ∈ I, v ∈ S.
Denn nach den Bedingungen für εi,v und Theorem 3 gilt:
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(1) Fast alle ηi,v = εi,v(ai, x
′)v sind gleich 1.

(2) Für alle i ∈ I ist
∏

v∈V ηi,v =
∏

v∈V (εi,v(ai, x
′)v) =

∏
v∈V εi,v

∏
v∈V (ai, x

′)v = 1.

(3) ∀v ∈ V : ∃x′v ∈ Q∗v : ∀i ∈ I : (ai, x
′
v)v = ηi,v. Setze x′v := x′/xv, dann ist (ai, x

′/xv)v =
(ai, xv)v(ai, x

′)v = εi,v(ai, x
′)v = ηi,v.

Falls v ∈ S, dann ist x′/xv ∈ Q∗2v , also ∀i ∈ I : ηi,v = (ai, x
′/xv)v = 1.

Auf die Familie ηi,v ist nun Fall 1 anwendbar, denn T̃ := {v ∈ V : ∃i ∈ I : ηi,v = −1} ist
disjunkt zu S. Es existiert also ein y ∈ Q∗ mit ∀i ∈ I, v ∈ V : (ai, y)v = ηi,v. Setzen wir
x := yx′, dann ist ∀i ∈ I, v ∈ V : (ai, x)v = (ai, y)v(ai, x

′)v = ηi,v(ai, x
′)v = εi,v.
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