Alexandra Merz, Christian Semrau WS 2002/03

Kapitel III. Das Hilbert-Symbol

aus: Jean Pierre Serre: A course in arithmetics

Vortrag zum Seminar
”Quadratische Formen iiber p-adischen Zahlen”
an der LMU Miinchen

1 Lokale Eigenschaften

k bezeichne in diesem Abschnitt R oder ein Q, (p prim).

1.1 Definition und erste Eigenschaften
Definition. Seien a,b € k*. Falls die Gleichung

ar® +by* =z* (H)
eine Losung (z,y, ) # (0,0,0) in k3 hat, setze (a,b) = 1, sonst setze (a,b) = —1.
(a, b) heisst das Hilbert-Symbol von a und b beziiglich k.
Bemerkung. Sind c¢,d € k*, dann ist (ac?,bd?) = (a,b), denn hat ac’z? + bd*y* = 2? eine
Losung (z,y, ), dann ist (cz, dy, z) eine Losung von az? + by* = 22, hat ax? + by? = 2? eine
Losung (z,y, z), dann ist (z/c,y/d, z) eine Losung von ac?x? + bd*y? = 2.
Bezeichnet k** = {a? : a € k*} die multiplikative Gruppe der Quadrate in k*, dann definiert
also das Hilbertsymbol eine Abbildung k*/k** x k* /k** — {&1}. (Sprich k*/k*? als "k Stern

modulo Quadrate”).

Erinnerung. Folgende Aussagen aus der Algebra werden als bekannt vorausgesetzt:

Sei K ein Korper und b € K. Sei L := K(v/b) und N: L — K die Norm von L iiber K.
Falls b ein Quadrat in K ist, dann ist L = K, N(z) = x und N(L*) = K*.

Falls b kein Quadrat in K ist, dann ist L eine quadratische Erweiterung von K. Sei g € L
mit 32 =0. Esist L={z+ By :z,y € K} und N(z + By) = (z + By)(z — PBy) = 2> — by>.
N(L*) ist eine Untergruppe von K*.

Satz 1. Seien a,b € k*, ky := k(v/b). Dann ist (a,b) =1 < a € N(k}).

Beweis. 1. Fall: b ist ein Quadrat in k. b= c*,c € k*. Dann ist ky = k, N(k}) = k* > a
und (H) hat die Losung (0,1, ¢). Damit sind beide Seiten der Behauptung erfiillt.

2. Fall: b ist kein Quadrat in k. Sei 3 € ky mit 3% = b. Es ist N(z + By) = 2% — by*.

7<": Ista € N(kj), dann Jy, 2 € k: a = 22 —by? und es ist a- 12+ by? = 2%, also (a,b) = 1.

7=": Ist (a,b) = 1, dann 3(0,0,0) # (z,y,2) € k3 : az® + by? = 2?. Wire z = 0, dann wiire
by? = 2%, und weil y # 0 (sonst wire auch z = 0) wire b = (z/y)? € k**, aber b ist kein
Quadrat. Also ist z # 0 und mit £ = (2/x) + B(y/z) ist N(§) = 2%/2* — by*/2* = a. O
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Satz 2. Seien a,d’,b,c € k*, a # 1 in Formel ii)2) und iv)2).

i) (a,b) = (b,a), (a,c?) =1

i) (a,—a) =1, (a,1 —a) =1

iii) (a,b) =1 = (d’,b) = (ad',b)

iv) (a,b) = (a, —ab), (a,b) = (a, (1 — a)b)

Beweis. 1) 1) klar nach Def., 2) (0,1, ¢) ist Lsg. von (H)
ii) 1) (1,1,0), 2) (1,1,1) sind Lsg. von (H)
iii) (a,b) =1 =-a € N(k;). Weil N(k;) C k* eine Untergruppe ist, ist ' € N(k}) < ad’ €
N(k;). Die Behauptung folgt mit Satz 1.
iv) 1) (—a,a) =1 = (b,a) = (—ab,a), 2) (1 —a),a) =1= (b,a) = ((1 —a)b,a) O

Bemerkung. Formel iii) ist ein Spezialfall von
v) (ad’,b) = (a,b)(d,b).

Diese Formel (zusammen mit der Symmetrie) bedeutet die Bilinearitit des Hilbert-Symbols
und wird gleich bewiesen.

1.2 Berechnung des Hilbert-Symbols (a,b)

Wir geben zunéchst eine Berechnungsvorschrift fiir das Hilbert-Symbol in R an (Satz 3),
dann fiir Q,,p > 2 (Lemma 2 bis 4, Satz 4) und schlieflich fiir Q2 (Lemma 5 bis 7, Satz 5),
alle Berechnungsvorschriften vereint sollen dann Theorem 1 bilden.

1 fallsa>0oderb>0

Satz 3. Seien a,b € R*, dann ist (a,b) = { 1 fallsa<0undb<0

Beweis. Es ist R** = {z ¢ R: x > 0}.
Falls a > 0 oder b > 0, dann ist (a,b) = 1 nach Satz 2.i). Falls a < 0 und b < 0, dann ist
(a,b) = (—=1,—1) = —1, denn —2? — y* = 22 hat (in R) nur die triviale Losung. O

Theorem (Chevalley-Warning). Seien 0 # fi,..., f, € F,[X1,... X,] Polynome mit
Yor i deg fi <r. Sei L:={z € (F,)" :Vi: fi(x) =0}. Dann ist [L| =0 (mod p).
Daraus folgt, dass f = aX? +0Y? + c¢Z? € F,[X,Y, Z] eine nichttriviale Nullstelle hat.

Lemma 1. Sei v € Z}. Wenn (p,v) = 1, dann hat pz* + vy* = 2% auch eine Losung (z,y, 2)
bei der x € Z, und y, z € Z.

Beweis. Wenn (p,v) = 1, dann hat nach Satz 6 (a=b) aus Kapitel IT, 2.1 die Gleichung pz?+
vy? = 2% eine primitive Losung (x,y,2) € (Z,)*. Wir zeigen, dass (z,y, z) die gewiinschte
Eigenschaft hat.

Wenn nicht y,z € Z; wiren, dann wire y = 0 (mod p) oder z = 0 (mod p). Wegen
vy? = 2% (mod p) und v # 0 (mod p) wiire dann y = 0 = 2z (mod p), also pz? =0 (mod p?).
Damit wire 22 = 0 (mod p) und also z = 0 (mod p), im Widerspruch zur Primitivitit der
Losung. O]

Lemma 2. Seien p > 2, u,v € Z;. Dann ist (u,v) = 1.



Beweis. Die Gleichung ux? + vy?> — 22 = 0 hat nach dem Korollar zum Theorem von
Chevalley-Warning eine nichttriviale Losung modulo p. Weil die Diskriminante dieser qua-
dratischen Form eine p-adische Einheit (—uv) ist, folgt aus (Kor.2 zu Th.1 in I1,2.2), dass
es eine p-adische Losung gibt, also ist (u,v) = 1. O

Definition. Ist p > 2, u € Z;, dann sei (%) = (“mOdp> e {-1,1}.

p

Lemma 3. Seien p > 2, u,v € Z;. Dann ist (pu,v) = (%)

Beweis. Wegen (u,v) =1 (nach Lemma 2) gilt nach Satz 2.iii) (pu,v) = (p,v).
Falls v ein Quadrat ist, dann ist (p,v) =1 = (%) nach Satz 2.i).

v

Falls v kein Quadrat ist, dann ist (1—3> = —1. Waire nun (p,v) = 1, dann gébe es nach

Lemma 1 eine primitive Losung, bei der y und z Einheiten sind. Es wire dann v = (z/y)?
(mod p), aber v ist hier kein Quadrat. Also muss (p,v) = —1 sein. O

Lemma 4. Seien p > 2, u,v € Z;. Dann ist (pu,pv) = (—1)(1’_1)/2(%) (%)

Beweis. Nach Satz 2.iv) ist (pu, pv) = (pu, —pupv) = (pu, —uv).
Aus Lemma 3 folgt (pu, —uv) = (%“’) (setze die Einheit —uwv fiir v).

Wegen <_71> = (=1)P=1)/2 gerfillt <_T“”> in die rechte Seite und wir sind fertig. O

Satz 4. Seip > 2, a,b € Q), a =pu,b= pPu, wobei o, 3 € Z, u,v € Z,, dann gilt

@ = o (1) (1)

Dabei ist £(p) = &5 mod 2 € Z/2Z.

Beweis. Auf beiden Seiten der Gleichung ist nur wichtig, ob a und 3 gerade oder ungerade
sind. Man kann also zu ihren Resten modulo 2 iibergehen. Durch die Symmetrie des Hilbert-
Symbols und der rechten Seite sind nur noch drei Félle zu unterscheiden.

Fall 1: «=0,6=0 Das ist Lemma 2.
Fall 2: a=1,4=0 Das ist Lemma 3.
Fall 3: a =1,6=1 Das ist Lemma 4. O

Lemma 5. Seien u,v € U =Zj, dann ist (u,v) =1 < u=1 (mod 4) Vv =1 (mod 4).

Beweis. ,=“: Sei ux?® 4+ vy* = 2? nichttrivial 16sbar. Es gibt dann (nach Satz 6 aus Kapitel
I1, 2.1) eine primitive Losung (z,y,z) € (Z)®. Nehmen wir nun an, es wire u = —1
(mod 4) und v = —1 (mod 4). Die primitive Losung erfiillt dann 0 = 2%+ 22 + y? (mod 4).
Weil aber 0,1 die Quadrate von Z/47Z sind, kann diese Kongruenz nur erfiillt sein, wenn
alle drei Variablen kongruent 0 modulo 2 sind, was der Primitivitdt widerspricht. Also ist
u =1 mod 4 oder v =1 mod 4.

,<=“rSeiu =1 (mod 4), dann ist u = 1 (mod 8) oder v =5 (mod 8). Im ersten Fall ist u
ein Quadrat (Th.4 in II,3.3), also (u,v) = 1, im zweiten Fall ist v +4v = 1 (mod 8), also
u + 4v ein Quadrat, und es gibt ein w € Zy mit w? = u + 4v. Die Gleichung uz? + vy? = 22
hat also die Losung (1,2, w). Damit ist (u,v) = 1. Analog folgt aus v = 1 (mod 4), dass
(u,v) = 1. O



Lemma 6. Sei v € Zj. Dann ist (2,v) =1 < v ==+1 (mod 8).

Beweis. ,=“: Falls (2,v) = 1, dann ist 222 +vy* = 22 nichttrivial 16sbar und nach Lemma 1
existiert eine Losung z,y,2 € Zy mit y, 2z # 0 (mod 2). Fiir diese Losung gilt y? = 22 =1
(mod 8), und damit v = 1 — 222 (mod 8). Weil 0, 1,4 die Quadrate von Z/8Z sind, folgt
daraus, dass v = £1 (mod 8).

,<="“ Falls v =1 (mod 8), dann ist v ein Quadrat und (2,v) = 1. Falls v = —1 (mod 8)

dann hat 2z% + vy* = 2% modulo 8 die Losung (1,1,1) und nach (Kor.3 zu Th.1 in I1,2.2)
liefert diese Néherungslosung eine exakte Losung. Damit ist (2,v) = 1. O
Lemma 7. Seien u,v € Zj, dann ist (2u,v) = (2,v)(u,v).

Beweis. Wegen Satz 2.iii) ! ist das nur noch im Fall (2,v) = (u,v) = —1 zu beweisen, also

falls v = £3 (mod 8) (nach Lemma 6) und w,v = 3 (mod 4) (nach Lemma 5). Da beide
Bedingungen gleichzeitig erfiillt sind, gilt © = 3 (mod 8) oder u = 7 (mod 8) und v = 3
(mod 8).

Falls u = 3 (mod 8),v = 3 (mod 8), dann sind v’ := 3/u =1 (mod 8) und v’ := —5/v =1
(mod 8) Quadrate in Qj, damit ist uu’ = 3, vo’ = =5 und (2u,v) = (6, —5). 62% — 5y? = 2*
hat die Losung (1,1,1), also ist (2u,v) = 1.

Falls u = 7 (mod 8),v = 3 (mod 8), dann sind v/ := —1/u =1 (mod 8) und v/ :=3/v =1
(mod 8) Quadrate in Q}, damit ist uu’ = —1, vv’ = 3 und (2u,v) = (=2, 3). —22%+3y? = 2>
hat die Losung (1,1, 1), also ist (2u,v) = 1. O
Definition. Fiir u € Zj sei e(u) := 5! mod 2, w(u) := Y=L mod 2 € Z/Z.

e und w sind Homomorphismen von Zj nach Z/2Z, d.h. e(zy) = () + £(y), w(zy)

w(z) + w(y).

Beweis. Seien z,y = 1 (mod 2), dann ist (z — 1), (y—1) =0 (mod 2), also (x —1)(y — 1) =
ry—(z+y)+1= (zy—1)—(z+y—2) =0 (mod 4), damit ist e(zy) = 21 = T2 = ¢(z)+
e(y) (mod 2). Esist (z2—1), (y>*—1) =0 (mod 8), also (z*—1)(y?

(z22 — 1) — (22 + 42 — 2) = 0 (mod 16), damit ist w(zy) = £
(mod 2). O
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Satz 5. Seien a,b € Q3, a = 2%, b = 2°v, wobei «, 8 € Z, u,v € U, dann gilt
(CL, b) _ (_1)a(u)5(v)+aw(v)+ﬁw(u)
Beweis. Auch hier kann man zu den Resten von o« und § modulo 2 iibergehen, und auch

hier sind beide Seiten symmetrisch.

Fall 1: a =0,3=0 Zu zeigen ist (u,v) = (—1)5®=®),
Das ist Lemma 5, denn (—1)*"") =1 <y =1 (mod 4) Vv =1 (mod 4).

Fall 2: o =1,3=0 Zu zeigen ist (2u,v) = (—1)se=)+wv),
Wegen (—1)“®) =1 < v = =1 (mod 8) und Lemma 6 wissen wir (2,v) = (—1)“®).
Mit Lemma 7 haben wir (2u,v) = (2,v)(u,v) = (=1)*®)(=1)sw=),

Fall 3: a=1,8=1 Zu zeigen ist (2u,2v) = (—1)sWe)Fwv)+eu),
H2,0) =1= (u,0) = (2u,v), (u,0) =1 = (2,v) = (2u,0)




Nach Satz 2.iv) ist (2u,2v) = (2u, —4uv) = (2u, —uv). Gerade gezeigt wurde (2u, —uv) =
(—1)selzu)+e(=uw) (nimm —yo fiir v in Fall 2).

Es ist e(zy) = e(x) + e(y), w(zy) = w(x) + w(y), ausserdem ist e(—1) = 1,e(u)(1 + £(u))
0,w(—1) = 0. Also ist e(u)e(—uv) + w(—uv) = e(u)e(v) + w(u) + w(v).

Ol

Theorem 1. Wir fassen die Aussagen der Satze 3, 4 und 5 zusammen zum Theorem 1.

Theorem 2. Das Hilbert-Symbol ist eine regulire Bilinearform des I, -Vektorraums k*/k*?
in den Fy-Vektorraum {+1}.

Die Bilinearform (a, b) nach {41} heisst reguldir (oder nicht ausgeartet), wenn fiir jedes b € k*
mit Va € k*: (a,b) = 1 gilt, dass b € k*? ist. Das ist gleichbedeutend damit, dass es zu
jedem Nichtquadrat b € k* \ k*? ein a € k* gibt mit (a,b) = —1.

Beweis. k*/k** ist ein Fy -Vektorraum, denn:

Man priift leicht nach, dass jede (additiv geschriebene) abelsche Gruppe G mit der Eigen-
schaft @ + a = OVa € G mit der Skalarmultiplikation Oa = 0, la = a einen Fy -Vektorraum
bildet.

k* /k*? erfiillt diese Bedingung (mit der Multiplikation der Restklassen als Vektoraddition),
denn Vu € k* : u? € k*?, also ist k*/k** ein Fy -Vektorraum (mit der Skalarmultiplikation
a fiir a € k*/k*? X € Fy).

R*/R*? hat die Représentanten {1, —1} und bildet einen eindimensionalen F, -Vektorraum
mit der einzigen Basis {—1}. Die Bilinearitét ist nur noch im Fall (a,b) = (a’,b) = —1 zu
zeigen (die anderen Fille sind in Satz 2.ii) gezeigt): 1 = (1,-1) = (=1,-1)(—1,-1) =
—1-—1. Dass das Hilbert-Symbol fiir R regulér ist, folgt aus (—1,—1) = —1.

Fiir p > 2 folgt die Bilinearitdt des Hilbert-Symbols in @, aus Satz 4 und 5.
Nach (Kor. zu Th.3 in I1,3.3) hat @;/@;2 fiir p > 2 die Représentanten 1, p, u, pu mit u € Zj,

<%) = —1. Q;/Q;z ist ein 2-dimensionaler Fy-Vektorraum, eine Basis ist {p,u}. Es folgt

aus (u,p) = (u,pu) = —1, dass das Hilbert-Symbol regulér ist.

Nach (Kor. zu Th.4 in 11,3.3) hat Q5/Qj3? die Reprisentanten u, 2u mit u = +1, £5. Q}/Q3
ist ein 3-dimensionaler Fo-Vektorraum, eine Basis ist {2, —1,5}. Aus (—1,—-1) = (=1, -5) =
(2u,5) = —1 folgt, dass (a,b) regular ist. H

Korollar 1. Wenn b kein Quadrat ist, dann ist N(k}) eine Untergruppe mit Index 2.

Beweis. Die Abbildung ¢y,: k* — {£1}, ¢p(a) = (a,b) ist ein Homomorphismus (das folgt
aus der Bilinearitdt von (a,b)), hat nach Satz 1 den Kern N(k}), und ist surjektiv, da
(a,b) reguldr ist. Also definiert ¢, einen Isomorphismus k*/N(k;) — {£1}. Damit ist
[k* : N(kp)] = 2. O

Bemerkung. Wenn wir (a,b) = (—1)[*" schreiben mit [a, b] € Fy, dann ist [-,-] : &*/k* x
k*/ k*? — Ty eine symmetrische Bilinearform von Fy-Vektorrdumen, die wir nach Wahl
einer Basis B durch eine Multiplikation mit der darstellenden Matrix beschreiben kénnen:
[z,y] = 2'Ajj, wobei & der Koordinatenvektor (in (Fy)?™) des Vektors z (in k*/k*?) ist.

e Fiir k =R ist B = {—1} die einzige Basis von k*/k** und A = (1).



o Fiir k = Q,,p # 2 und die Basis B = {p,u} ist A = (1 0

0 1) falls p =1 (mod 4) und

A= G é) falls p = 3 (mod 4).

0
e Fiir £ = Q, und die Basis {2, 1,5} ist A= [0
1

O = O
o O =

2 Globale Eigenschaften

Q lasst sich als Teilkorper in jedes @, und in R einbetten. Seien a,b € Q*, dann bezeichne
(a,b), ihr Hilbert-Symbol beziiglich Q, und (a,b)s ihr Hilbert-Symbol beziiglich R. Sei P
die Menge der Primzahlen, V := P U {0}, und Q4 := R. Dann ist Q dicht in Q, fiir alle
veV.

2.1 Produktformel

Theorem 3 (Hilbert). Seien a,b € Q*. Dann ist (a,b), = 1 fiir fast alle v € V' (alle bis
auf endlich viele) und es ist [] (a,b), = 1.

veV

Beweis. Durch Multiplikation mit rationalen Quadraten kann man a,b als ganze Zahlen
darstellen, ohne irgendeines der Hilbert-Symbole zu dndern: a = [\, p;, b = H;nzl q; mit
Diy¢; € PU{—1} (nicht notwendig verschieden).

Wegen der Bilinearitdt des Hilbert-Symbols geniigt es, das Theorem fiir den Fall zu be-
weisen, dass a und b selbst Primzahlen oder —1 sind. Denn sei M(z,y) = {v € V :
(z,y)y = —1}. Dann folgt aus (a,b), = [[, [T}~ (pi,q;), die Beziehung M/(a,b)

Uiz Uj=, M (pi, ¢;) (denn wenn (a,b), = —1, dann muss mindestens eines der (p;, g;).
—1 sein). Wenn nun alle M(p;,q;) als endlich nachgewiesen sind, dann ist M/(a,
als endliche Vereinigung endlicher Mengen auch endlich. Damit ist ], . (a,b),

[Loev ITiz H;'n:1(pz'a qj)v = I1iz HT:1 [Lev(Pi,45)vs (weil nur noch endliche Produkte auf-
treten,) und wenn [], _\,(pi,¢;)o = 1, dann gilt auch [], .\ (a,b), = 1.

Fall 1: « = —1,b = =1 Esist (-1,-1) = (=1,-1); = =1 und (-1,-1), = 1 fur
v # 2,00 (Lemma 2 in Abschnitt 1.2), das Produkt ist gleich 1.

Fall 2: a = —1,b=1,lprim Wenn! =2 dannist (—1,2), = 1firallev € V ((=1,2)s =1
nach Lemma 6, (—1,2), = 1 nach Satz 3, restliche v mit Lemma 2).

Wenn [ # 2, dann ist (—1,1), = 1 fir v # 2,0 (Lemma 2 und Satz 3), (—1,1)s =
(=1)sDe0 = (=1)*® (Fall 2 in Satz 5), (-1,1); = () = (=1)*¥ (Lemma 3). Das
Produkt ist gleich 1.

Fall 3: a=10,b=10,1,I' prim Wenn [ =1, dann folgt aus Satz 2.iv) dass (I,{"), = (—=1,1),
Vv € V und wir sind im zweiten Fall.

Wenn [ # I’ und I’ = 2, dann ist (1,2), = 1 fiir v # 2,1 (Lemma 2), (I,2); = (—1)*®) (Fall 2
in Satz 5), (1,2); = (3) = (—1)*) (Lemma 3). Das Produkt ist gleich 1.

Wenn [, " verschieden und ungleich 2 sind, dann ist (1,1), = 1 fiir v # 2,[,!’ (Lemma 2) und
(1,1 = (=1)*0=®) (Fall 1 in Satz 5), (I,I); = (%), (1,!)r = (%) (Lemma 3). Nach dem
Reziprozititsgesetz ist (%) (ZL,) = (=1)*®0=(") also ist das Produkt gleich 1. O
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2.2 Existenz rationaler Zahlen mit vorgegebenen
Hilbert-Symbolen

Theorem 4. Sei [ eine endliche Menge, (a;)ie; mit a; € Q*, und sei (€;,)icrvev mit &, €
{#£1}. Dann sind die folgenden Aussagen dquivalent:

(a) Es gibt ein x € Q*, so dass Vi € [,v € V: (a;, %)y = €i 0.
(b) Die folgenden drei Bedingungen sind erfiillt:
1) Fast alle ¢;, sind gleich 1.

(
(2) Fiir alle i € I ist [],.y
B) VweV:3x, e Qi:Viel: (a;,2,)y = Ein-

Eiv = 1.

7(a)=(b)”: Die Giiltigkeit der Bedingungen (1) und (2) folgt aus Theorem 3, und mit
x, = x ist Bedingung (3) erfiillt. Zum Nachweis der anderen Richtung brauchen wir drei
Lemmas.

Lemma 1 (Chinesischer Restsatz). Seien ay,...,a, € Z und my, ..., m, € Z paarweise
teilerfremd. Dann gibt es ein a € Z mit a = a; (mod m;) furi=1,...,n.

Lemma 2 (N#herungssatz). Sei S ¢ V endlich. Dann ist das Bild von Q dicht in
HUGS QU'

Beweis. Sei (Ty)ves € [[,eqQu, dann ist zu jedem ¢ > 0 ein Z € Q zu finden, so dass
d(z,z,) < ¢ fiir alle v € S. Das ist fiir v = p prim gleichbedeutend mit v,(z — z,) > N fiir
ein geeignetes V.

Falls co ¢ S, dann fiigen wir oo zu S hinzu und beweisen mehr als notig ist.

Sel (Too, T1y -+ -, Tn) € R X Qp X ... x Q,, und seien € > 0 und N € N beliebig vorgegeben.
Es ist nun ein T € Q zu finden, so dass |7 — To| < € und v, (T — ;) > N fiir alle i.

Durch Multiplikation des Tupels mit einer geeigneten natiirlichen Zahl 2 m > 1 erhalten wir
T =mx; € Ly, fiir i =1,...,nund oo = MTs.

Setze M := max{v,,(m)} und N := N+ M eN. (Denn 0 < M € Z.) Nach Lemma 1 (mit
m; = pY,a; = z; (mod pY)) existiert ein zy € Z, so dass vy, (rog — x;) > N fiir alle i.

Sei nun ¢ > 2 eine zu allen p; teilerfremde Zahl (z.B. eine weitere Primzahl). Die ra-

tionalen Zahlen {(;% ra€Z,reN } liegen dicht in R.®> Wihle eine Zahl u = ;ir mit
‘mg—xoo+u(p1...pn)N| <e.
Wir setzen x := 2¢ +u(p; ...pn)Y. Fiirallei=1,... ngilt ¢ € Ly, also ist u € Zy, und

Up; (Q? - xl) = Upi(xo + u(pl ‘. ~pn)N - xz)
> inf{vpi (1'0 - xi)vvpi(u) + Upi((pl .- -pTL)N)} > N
—_———— —— N z

Vv
>N >0 =N
Setzen wir 7 := £, dann haben wir |7 — 7| = |[“2=| < £ < ¢ und
r — T

Upi(%_fi):’upi( ):Upi(x_xi)_vpi(m)ZN_M:N

22B.m:=[[_,p" inf{vp,; (:),0} ¢ N
3reRe>0,geN=IreN:qg"<¢e3a€Z:|¢"vr—al <1, also |z —a/q"| <e.
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Lemma 3 (Dirichlet). Wenn a,b € N teilerfremd sind, dann gibt es unendlich viele Prim-
zahlen der Form an 4+ 0. Wird in Kapitel VI bewiesen ohne Verwendung von Resultaten aus
den vorigen Kapiteln.

Beweis von Theorem 4. 7 (b)=-(a)”: Seien die drei Bedingungen erfiillt. Ohne die Hilbert-
Symbole zu verdndern, konnen wir die a; mit den Quadraten ihrer Nenner multiplizieren
und deshalb annehmen, dass alle a; in Z liegen.

Sei S = {2, 00} vereinigt mit der Menge der Primteiler der a;.

SeiT ={veV:Iel: e,=—-1}

S,T C V. Beide Mengen sind endlich (S klar, 7" nach Bedingung (1)).

1. Fall: SNT =10. Dannist co € T. Setze a :=[[T, m:=8][(S\ {2,00}).

Weil SNT = ) sind a und m teilerfremd. Nach Lemma 3 existiert eine Primzahl p = a
(mod m) mit p € SUT. Wir werden zeigen, dass = := ap die gewiinschte Eigenschaft
(a;,z), = €;, Vi € I,v € V hat. Seien dazu ¢ € I und v € V beliebig vorgegeben.

[.veS: Dannist v ¢ T und deshalb ¢;, = 1. Ist v = oo, dann ist (a;,2)s = 1 Wegen
x > 0. Ist v = [ eine Primzahl, dann ist z = ap = a® (mod m), also x = a* (mod 8) und
r = a® (mod [). Das zeigt, dass = ein Quadrat in Q; ist (s. 11,3.3), also ist (a;, ), = 1.
II.v € S, v =1prim: Dann gilt Vk € [ : a € Z; (denn [ t a). Da [ # 2 folgt aus
Theorem 1

ak>vl(b)

VkEI,bEQ?I (ak,b)l: <T

II.1. I TU{p}: Dann gilt z = ap € Z; (denn I { p, [ 1 a =[] T), also v;(z) = 0 und wir
haben (a;, z); = (%)O =1, und wegen [ ¢ T ist ¢;; = 1.

I1.2. 1 € T : Dann ist v)(z) = 1 (denn = = ap ist ein Produkt verschiedener Primzahlen,
| a). Wegen Bedingung (3) existiert ein x; € Q) mit Vk € I: (ay,x;); = €y Wegen l € T
gibt es ein j € I fiir das £;;, = —1 und wir haben (a;,7;); = —1 = (%)W(ml), deshalb muss
v(z;) =1 (mod 2) sein, also gilt (a;, x); = (%)vl(x) = (%) = (%)vl(xl) = (@i, 1)1 = €iy-

I1.3. I = p : Dann ist nach Theorem 3, den Féllen I, I1.1, I1.2 sowie Bedingung (2)

(aia w)p = H(aia x)v = Hgi,v =C&ip

v#p v#p

2. Fall: SNT # (. Aus Kapitel 11,3.3 wissen wir, dass die Quadrate in Q eine offene
Untergruppe bilden (auch in R*). Es gibt also (wegen der Endlichkeit von S) ein N € N, so
dass fiir alle Primzahlen p € S gilt: Ist z € Q) mit v,(z — 1) > N, dann ist = ein Quadrat
in Q.
Von der Bedingung (3) haben wir ein Tupel (2,)ves € [[,cg Qv (dabei ist jedes z, € Q).
Setze M := max{v,(z,) : p € S prim} € Z. Nach Lemma 2 existiert ein 2/ € Q* mit
vp(2' — x,) > N + M fiir alle Primzahlen p € S und |2’ — 2o| < |7o/2| in R. Dann ist
vp(2' )z, — 1) = vy(a) —xp) —vp(xp) > N+ M —M =N und |2/ /x5 — 1] < 1/2, also ist fiir
alle v € S die Zahl 2’ /x, ein Quadrat in Q.
Setzen wir fiir allei € [,v € V

Miw = €i0(ai, ')y
dann erfiillt die Familie (7;,) die Bedingungen (1),(2),(3) und es ist n;, =1 Vi € [,v € S.
Denn nach den Bedingungen fiir €;,, und Theorem 3 gilt:
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(1) Fast alle 1;, = €;,(a;,2"), sind gleich 1.

(2) Firalled € Iist [] o 0 = [Loev (€iwl(ai o)) = [ ey €iw [ ey (@i, 2')0 = 1.
(3) Yo e V: 3l e Q}:Vie I (a;,x)), = Mip. Setze z := 2'/x,, dann ist (a;,2'/x,), =
(aiu xv)v(aia lJ)v = 51’,1}(@1'7 II)U = Niv-

Falls v € S, dann ist 2//z, € Qi?, also Vi € I: n;, = (a;, 2/ [xy), = 1.

Auf die Familie n;, ist nun Fall 1 anwendbar, denn T = {fveV: :Jiel n,=—1}ist
disjunkt zu S. Es existiert also ein y € Q* mit Vi € I,v € V: (a;,y)y = Mip. Setzen wir
r:=yx dannist Vi € I,v € V: (a;, ), = (ai, Y)o(ai, ")y = Mip(ai, @)y = €44 O



